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ABSTRACT

This paper is the first in a two-part series that investigates a method of ensemble
post-processing designed to mitigate the effect of stochastic model errors on ensemble
covariance. The method performs a series of filtering experiments with the operational
ensemble members, obtaining a set of forecast states which is less corrupted by errors
of stochastic origin. It then uses some number of the filtered states to complement or
supplant the operational members, forming a so-called hybrid ensemble.

In this paper the method is introduced and a prototype filtering scheme is established
for use in the method’s evaluation. The efficacy of the filtering scheme is gauged through
composite and ensemble-by-ensemble comparisons between the root-mean-square error
characteristics of the set of filtered states and those of the operational ensemble. These
comparisons are based upon a year’s worth of global ensemble data, and suggest that
the filtering scheme can in fact consistently produce a set of states which are generally
less corrupted by stochastic errors than the operational members are. Some underlying
properties of the prototype filtering scheme are also highlighted. This is accomplished
by investigating the filtered states’ performance from the perspectives of probabilistic

modelling and so-called anomaly projection.



1. Introduction

In numerical weather prediction the initial state can only be fully described in terms
of some probability density function (PDF). Also, arbitrarily small errors in the initial
state may exhibit large growth. These two observations effectively eliminate any chance
at successful deterministic weather forecasts except on those rare occasions wherein the
forecast evolution is relatively insensitive to initial state uncertainty. In view of this
reality, weather forecasts should be probabilistic in nature. Ensemble prediction origi-
nated as a means to estimate the forecast PDF given some initial PDF associated with
the uncertainty in the specification of the initial state (Leith 1974, Molteni et al. 1996,
Toth and Kalnay 1997). In practice, the method involves performing a series of model
integrations from some finite set of initial conditions obtained through perturbation of
the best estimate of the initial state. The set of forecast states provided by the integra-
tions defines the estimate of the forecast PDF. Probability forecasts for arbitrary weather
events can be derived from the estimate of the forecast PDF.

The effectiveness of an ensemble prediction system is dependent upon two factors:
how well the initial PDF is defined and sampled, and how well the numerical model
simulates the dynamics and physics of the real atmosphere. The greater proportion of
early efforts into ensemble prediction was devoted to defining and sampling the initial
PDF. A large body of recent work has suggested, however, that model errors can have
considerable detrimental impact on the skill of ensemble-derived probability forecasts
(Colucci and Baumhefner 1998, Buizza et al. 1999, Harrison et al. 1999, Palmer et al.
1999, Stensrud et al. 1999, Evans et al. 2000, Palmer 2000, Orrell et al. 2001, Palmer
2001, Wandishin et al. 2001, Alhamed et al. 2002, Bright and Mullen 2002, Mylne et al.
2002, Barkmeijer et al. 2003, Orrell 2003). Thus, it has become clear that if the utility
of ensemble-derived probability forecasts is to be fully realized, then the characteristics

and sources of model errors must be identified, and means of mitigating or eliminating



these errors must be devised and implemented.

For elaboration on the model error problem consider two different forecast trajec-
tories, one evolved from a given initial state using a numerical model and one evolved
from the same initial state using real atmospheric dynamics and physics (Fig. 1). The
difference at some time ¢ between the state on the numerical model’s forecast trajectory
and the state on the real atmospheric forecast trajectory represents the error introduced
by the model as of time ¢ (Fig. 2). This error may have two components, one of system-
atic origin and one of stochastic origin. The error component associated with systematic
processes has the same direction and magnitude for each ensemble member (Fig. 3).
This uniformity results in the mean of the ensemble distribution being displaced from
that of the real atmospheric distribution. The ensemble distribution is said to be ”bi-
ased” in this circumstance. The error component associated with stochastic processes
does not necessarily have the same direction and magnitude for each ensemble member
(Fig. 4). The effect of this error component is to corrupt the variance and covariance of
the ensemble distribution. For illustration, consider that the covariance of two random

variables X and Y is expressed as
Cov(X,Y) = E[XY] - E[X]E[Y], (1)

where E'[] is the expectation operator. If stochastically-induced errors a and b are added
to X and Y, respectively, then the covariance of the resulting corrupted versions of X

and Y (referred to as X* and Y*) is
Cov (X", Y*) = Cov(X,Y) + E[Xb + E[Ya] + E|[ab] , (2)

where it is assumed that the expected value of both @ and b is zero. Thus, stochastically-
induced errors will alter the covariance of random variables through the last three terms
on the right-hand side of Eq. 2.

Methods of dealing with model systematic and stochastic errors in ensemble pre-

diction can be classified as to whether they operate during the course of the numerical



integrations or after the integrations are completed. Methods of the former class include
those of Buizza et al. (1999) and Bright and Mullen (2002), which incorporate additional
terms in the numerical model to mitigate the effect of stochastic errors in the model’s
parameterized coupling between unresolved- and resolved-scale flow. Also in the former
class is the ”forcing singular vector” method of Barkmeijer et al. (2003), which assesses
the effect of systematic perturbations to model-variable physical tendencies.

Methods that compensate for model errors after the numerical integrations are com-
pleted are referred to as ”post-processing” methods. One of these, termed the calibration
method, adjusts ensemble-derived event probabilities in accordance with some distribu-
tion (parametric or nonparametric) that describes the historical likelihood that the ver-
ifying event will assume a certain location in the hierarchy of ensemble-depicted events
(Hamill and Colucci 1998, Eckel and Walters 1998, Hamill 2001). Calibration is able to
mitigate the effects on ensemble-derived probabilities of both model systematic errors
and incorrect ensemble variance (which is partly the product of model stochastic errors).
Another post-processing method is the formation of a multi-model ensemble (Harrison
et al. 1999, Stensrud et al. 1999, Evans et al. 2000, Wandishin et al. 2001, Mylne et al.
2002, Alhamed et al. 2002). This involves the combination of ensemble members from
two or more different ensemble prediction systems, on the basis that the members from
one system may not be subject to the same model systematic and stochastic error effects
as the members from the other system(s). What might be termed a derivative form of
the multi-model ensemble method is the perturbed-model ensemble method (Houtekamer
et al. 1996, Stensrud 2000). In this approach, the ensemble members are all generated
using the same model, but each member is generated using different combinations of
that model’s available physics packages, convective schemes, etc. Another, emerging
post-processing method is that of ensemble member dressing (Roulston and Smith 2003,
Wang and Bishop 2004). This approach involves forming a statistical ensemble for each

member of the dynamical ensemble (i.e. the ensemble obtained by integrations of a nu-



merical model) by sampling the space around the given member in accordance with the
member’s historical error statistics. The statistical ensembles (described as ”dressing”)
are then combined with the dynamical ensemble to form a so-called hybrid ensemble,
from which probabilistic forecasts are henceforth derived. The dressing method provides
some compensation for the effect of stochastic model errors, and its development has
established the feasibility and economy of using statistical, or otherwise non-dynamical,
samples in ensemble prediction.

It is interesting to note that none of the existing methods for mitigating model error
effects employ filtering. As the objective of filtering is to retrieve the underlying good
information from a corrupted signal, it is not unreasonable to think it might be useful
in some capacity for dealing with forecast trajectories that are contaminated by model
errors. It is also interesting that all but one of the existing methods are intended to
improve the mean and/or variance of the ensemble distribution, but not necessarily its
covariance. The ensemble dressing method of Wang and Bishop is the exception, as it
strives for improvement in ensemble covariance by ensuring that the statistically gener-
ated members’ covariances are identical to the dynamical members’ seasonally averaged
error covariances. Since the problems with ensemble distributions’ statistical moments
have proven resilient to individual solutions, the existence of but one method for improv-
ing ensemble covariance is impetus for investigating alternative such methods. Given
these observations, a natural question is whether a post-processing technique that is
based upon filtering can be designed for the purpose of mitigating the effect of stochastic
model errors on ensemble covariance. The current paper and McLay and Martin (2005)
take the opportunity to set forth and assess one technique that is being explored in re-
sponse to this question. Along with introducing the new technique, these papers also
have the broader objective of opening a new line of inquiry into the challenging problem
of stochastic model errors.

The organization of the current paper is as follows. A synopsis of the post-processing



technique is provided in Section 2. In Section 3, a prototype filtering scheme is defined to
facilitate investigation of the technique. Section 4 presents a comprehensive assessment of
the prototype filtering scheme’s ability to produce a set of states with reduced-amplitude
stochastic errors, based upon a large sample of ensembles. In Section 5, some underlying
properties of the prototype filtering scheme are revealed through examination of the
question of whether certain filtered states systematically perform better than others.

Conclusions are presented in Section 6.
2. Description of the Method

Expressed mathematically, the basic objective is to find filtered versions of the cor-
rupted random variables X* and Y™ (referred to as X;* and Y}*, the subscript f identi-

fying a filtered variable) such that
| Cov (X", YY) — Cov(X,)Y)] < |Cov(X"Y") — Cov(X,Y) |, (3)

where the vertical bars denote an absolute value. To further examine this relation,

recognize that Cov (X", Y}") can be represented in analogy to Eq. 2 as
Cov (X;",Yy") = Cov(Xy,Yy) + E[Xsbs] + EYyas] + Elagbg] . (4)

where it is assumed that the filtering scheme is distributive and that E [as] = E [bf] = 0.
For ease of presentation the three terms in Egs. 2 and 4 that involve stochastic errors

collectively will be referred to as e and ey, respectively, such that

Cov (X", Y") = Cow(X,Y) + e, and (5)

Cov (Xf*,Yf*) = Cov (Xf,Yf) + ey . (6)

Substituting the righthand sides of Egs. 5 and 6 into Eq. 3 for Cov (X*,Y*) and
Cov (X", Y}"), respectively, then taking advantage of a rule of absolute value and as-

suming that F [X;] = F [X]| and E [Y;] = E[Y] it is found that Eq. 3 can be expressed



| E[XpYy] — EIXY][ < lel = leg] - (7)

Eq. 7 allows for some insight into the conditions that must be met if filtering is to be
used to improve ensemble covariance. Two observations follow upon its inspection:

1. The righthand side of Eq. 7 must be greater than zero. This means that the filtering
must produce a distribution of states with stochastic errors that are generally of reduced
amplitude, so that |es| < |e| .

2. The lefthand side of Eq. 7 ideally would be zero. This circumstance is most easily
realized if the filtering causes no reduction in amplitude of the true! states X and Y.
However, because both sides of Eq. 7 involve differences it is apparent that some filter-
ing of the true states is permissible, provided that some reduction in amplitude of the
stochastic errors is achieved simultaneously. This means that the filtering does not have
to exactly differentiate between stochastic errors and true states in order to provide for
improved covariance. What the filtering does have to do is reach an effective compromise
between the elimination of errors and the smoothing of true flow states.

It must be borne in mind that the points made regarding the second observation above
rest in part on the aforementioned assumption that E[X] = E[X] and E[Y;] = E[Y].
This assumption essentially represents another condition that must be satisfied if the
filtering is to prove beneficial. In the case that F [as] = E[bf] = 0 (a not unreasonable
scenario) then this condition will be met simply if £ [X;*| = E[X*| and E [Y}"] = E[Y™].

A filtering scheme that satisfies the conditions discussed above can facilitate an im-
provement in ensemble covariance. The main impediment to using filtering for this pur-
pose is the reduction in amplitude of true flow states that is attendant with the filtering

process. This reduction in amplitude will operate to increase the lefthand side of Eq.

!Tn the context of numerical weather forecasts, a ”true” state is one that would be realized if an

initial state is evolved with the dynamics of the real atmosphere.



7 and thereby degrade estimates of covariance. Similarly, it will serve to diminish esti-
mates of variance. In fact, even if filtering can engender an improvement in covariance,
this improvement may not translate to an improved multi-dimensional probabilistic fore-
cast because of the detriment of diminished variance. The hypothesis that underlies the
present analysis is that one might be able to mitigate the problem of the filtering of true
states without eliminating the possibility of improved covariance by using some number
of the filtered states in concert with some number of the unfiltered states in a so-called
“hybrid” ensemble distribution. Adoption of this hybrid ensemble approach means that
a two-part post-processing methodology will be explored in the present analysis. The

methodology specifically involves:

1) The provision for a given operational ensemble of a sample of filtered states whose
stochastic errors are generally of reduced amplitude.

2. The selection of a subset of the filtered states to complement or supplant the oper-
ational ensemble members, under the constraint that the resulting distribution’s mean

and variance is comparable to that of the operational ensemble.

The hybrid ensemble that is the culmination of these two parts has mean and variance
comparable to that of the operational ensemble by design. Thus, assuming that the hy-
brid also affords improved covariance, it should provide for multi-dimensional probability

forecasts that are better than those based upon the operational ensemble.
3. Prototype filtering scheme

Investigation of the proposed methodology requires definition of a filtering scheme.
The prototype filtering scheme adopted for the present analysis involves forming all
possible pairs of operational members and then averaging the members in each pair. In
the case of the National Center for Environmental Prediction (NCEP) Global Forecast

System (GFS) 0000UTC initialization 11-member ensemble, there are 55 possible pairs
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and hence 55 so-called ” pair-wise” filtered states.

Two observations together suggest that the pair-wise filtering might actually serve to
reduce the amplitude of stochastic errors despite its simplicity. One is that the average
of two dissimilar fields will generally have less amplitude than either one of the two fields.
Evidence of this general rule can be seen in the simple schematics of Fig. 5. The second
observation is that the stochastic-error fields in any two operational members are unlikely
to be identical, given the origin of the errors in random processes. There are, however,
no simple a priori observations to suggest that the pair-wise filtering can achieve an
effective compromise between the elimination of errors and the smoothing of true flow
components.

The choice of prototype filtering scheme prompts some additional remarks. For in-
stance, it is easily shown that the mean of the entire set of pair-wise filtered states is
identical to that of the operational ensemble. Similarly, it is easily shown that the mean
of the pair-wise filtered states’ true components is identical to that of the operational
ensemble’s true components, and that the mean of the filtered states’ stochastic errors
is zero. Thus, the filtered states display the desired mean properties outlined in Section
2. There is strong reason to believe that the membership of a given hybrid ensemble
will exhibit close to the same mean properties. Consider that the members of the hybrid
will, by design, be selected to optimize the hybrid’s variance, and so are apt to be as
dissimilar as possible. Since an appreciable change in mean properties would require
inherent commonality, not dissimilarity, among the selected members, such a change is
unlikely to be engendered by the construction of a hybrid ensemble.

Another remark is that averaging of ensemble output has proven most effective at
producing reduced-error global patterns in synoptic-type fields such as 500 hPa geopo-
tential height. With this point in mind, the pair-wise filtering scheme is applied only to
fields of 500 hPa geopotential height in the present analysis. Also, the filtering scheme’s

application is focused on forecasts in the middle to late stages of the medium range,
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where forecasts of variables such as precipitation and surface temperature have little or
no skill, and hence forecasts of synoptic flow patterns remain of considerable relevance.

Having defined a prototype filtering scheme, inquiry can now begin into several fun-
damental questions: Is the prototype filtering scheme able to produce on a systematic
basis new flow states that are less encumbered by errors than the operational members
are? Can hybrid ensembles actually offer improved covariance? Can hybrid ensembles
yield multi-dimensional probabilistic forecasts that are better than those yielded by the
operational ensemble? These questions are involved enough to be addressed separately,
with the current paper’s next section assigned to the first question and McLay and Martin

(2005) dedicated to the latter two.
4. Evaluation of the prototype filtering scheme’s efficacy
a. Data

Analysis is based upon 361 different National Center for Environmental Prediction
(NCEP) Global Forecast System (GFS) 0000UTC initialization 11-member ensemble
forecasts. These ensembles were generated during the one-year period between 21 De-
cember 2002 and 21 December 2003. The data were obtained on 2.5°-by-2.5° latitude-
longitude grids in a cylindrical equidistant (CED) projection. As stated in Section 3,
analysis is restricted to forecasts of 500 hPa geopotential height and the 192h forecast
leadtime. The appropriate Oh leadtime control forecast was used as verification in all
forecast error calculations. Several ensembles are missing or incomplete during the afore-
mentioned one-year period and hence are unverifiable: the 12 July 2003, 27 August 2003,
and 16 November 2003 ensembles. As a further consequence, 192h leadtime forecasts

initialized 0000UTC 4 July 2003 and 19 August 2003 are unverifiable.
b. Designation of operational ensemble members and pair-wise filtered states

The 11 members of a given ensemble include the control, five members obtained
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through the addition to the control analysis of five different perturbations, and five
members obtained through the subtraction from the control analysis of the five different
perturbations. The operational designations for these members are C'002, P001,...,P005,
and NO001,...,NO05, respectively. For the present analysis, the 10 perturbed members
(P001, P002, ..., NOO1, N002, ...) are referred to with alternative designations that
reflect the members’ rms distances from the ensemble mean. Specifically, the designations
Ni, N,,..., Nig are assigned to the member furthest from the mean, the member second
furthest from the mean,....,the member closest to the mean, respectively. Note that /Vq,
Ns,..., Nig will not necessarily correspond to the same operationally designated member
from ensemble to ensemble.

The designation for any specific pair-wise filtered state is simply the combination of
its two component operational members’ designations. For example, Ni N, refers to the

pair-wise filtered state derived from operational members N; and Ns.
c. Definition of "Basic” and ”Querall” Ensembles

Frequent reference is made in the analysis to the so-called ”basic” and ”overall”
operational ensembles, and to the so-called ”basic” and ”overall” operational members.
The ”basic” operational ensemble is defined to consist of the control and the 10 perturbed
members, and a ”basic” member is a member of this ensemble. The ”overall” operational
ensemble is defined to consist of the basic operational ensemble plus the ensemble mean,

and an "overall” member is a member of the overall ensemble.
d. Methodology

The reality is that for any given ensemble forecast only one true state is ultimately
known to a good approximation, this being the forecast verification (i.e. the verifying
analysis). An issue to be resolved is how it can be ascertained that the pair-wise filtered

states are generally less corrupted by errors of stochastic origin than the operational
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members are, given just this one true state for reference. To facilitate this issue’s resolu-
tion it is noted that the pair-wise filtered states have the same mean, and hence the same
systematic error component, as the operational members. Thus, if in terms of some error
measure the filtered states are found to be better approximations of true states than the
operational members are, it is because the filtered states’ stochastic error components
have been reduced. Also, to facilitate resolution it is assumed that a suitable measure
of the error in a given approximation of a true state is root-mean-square (rms) distance
from that true state. Additionally, focus is placed on the lower bound of the range of rms
error (rmse) of the overall operational ensemble and that of the set of pair-wise filtered
states. The lower bound of the range of rmse for a given overall ensemble is determined
by finding the minimum value of rmse associated with any member of the ensemble.
The lower bound of the range of rmse for the associated set of filtered states is similarly
determined. With these details for reference, it can be argued that the filtered states
are generally better approximations of true states and hence less corrupted by stochastic
errors if the lower bound of their range of rmse is smaller than the lower bound of the
range of rmse of the overall ensemble on a systematic basis. To understand this, consider
a scenario wherein one has a large sample of forecasts and, for 90% of the forecasts, the
event (hereafter referred to as E;) occurs that the filtered states’ range of rmse has a
smaller lower bound than that of the overall ensemble’s range of rmse. Since E; occurs
with high frequency across a large sample, it follows from the frequency interpretation
of probability that F; is very likely to occur for any given forecast (Ross 1998). It also
follows from elementary probability concepts that E; can be very likely to occur only if
the following condition is satisfied: Each of a large majority of the possible true states
t;;1 = 1,...,00 associated with a given forecast is better approximated by some filtered
state than by some overall operational ensemble member. Now, the question arises, ’'Does
this condition’s satisfaction imply that most of the filtered states are better approxima-

tions of possible true states?’. Ostensibly, the answer to this is 'no’. One can imagine a
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scenario wherein the possible true states are all grouped near a relatively small propor-
tion of the filtered states. In this scenario, the above condition could be satisfied, but
only a minority of the filtered states might actually be better approximations of possible
true states. However, such a scenario is contrived, and conceptualizations of it suggest
that it would involve the operational ensemble being super-variant or extremely biased
(Fig. 6). Neither of these circumstances frequently characterize operational ensembles,
according to documented studies. Specifically, studies indicate that one of the major
problems with operational ensembles is that they are too often sub-variant, not super-
variant (e.g. Mylne et al. 2002). Also, observations regarding the "proportion of outliers’
(i.e. the proportion of time in which the verifying state lies outside the envelope of an
ensemble distribution) for operational ensembles of 500 hPa geopotential height are not
consistent with there frequently being extreme bias in these distributions. For instance,
the results of Molteni et al. (1996) and Atger (1999) both indicate that the proportion
of outliers for the European Centre for Medium-range Weather Forecasting (ECMWF)
ensemble of 500 hPa height is less than 20% for typical medium-range forecast leadtimes.
Were these distributions to be frequently characterized by extreme bias, one would ex-
pect the proportion of outliers to be considerably greater. In view of these points, the
scenario wherein the possible true states are all grouped near a relatively small propor-
tion of the filtered states should not be a common occurrence. This means that when
the above condition (that ensures E; is very likely) is satisfied, it is generally because a
large proportion (but not necessarily all) of the filtered states are better approximations
of true states than are any members of the overall operational ensemble. It also means,
by extension, that if F, is found to be very likely it is because most of the time a large
proportion of the filtered states are better approximations of true states. With this con-
clusion, assessment of event F;’s likelihood (i.e. its frequency of occurrence) is the focal
point of the relative comparison between the distribution of pair-wise filtered states and

the operational ensemble.
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é. Composite Relative Comparison

A relative comparison of the rmse characteristics of the pair-wise filtered state dis-
tribution and those of the operational ensemble distribution can be carried out using the
large ensemble dataset described in Section 4a. The first part of the comparison involves
each distribution’s composite range of rmse. Computation of the composite range of rmse
for the basic ensemble first involves obtaining the range of rmse for each of the 361 basic
ensembles in the dataset. The range of rmse for any one of these ensembles is determined
by finding the minimum and maximum values of rmse associated with any member of
the given ensemble. Once these two quantities are determined for all 361 ensembles in
the dataset, each quantity is then averaged over the dataset to obtain the composite
range of rmse for the basic ensemble. Analogous steps determine the composite range
of rmse for the set of pair-wise filtered states. To complement the composite ranges of
rmse for the basic ensemble and the set of filtered states, the composite lower bound of
the overall ensemble’s range of rmse is also obtained. The lower bound of the range of
rmse for any one of the overall ensembles is determined by finding the minimum value
of rmse associated with any member of the given ensemble. Once this quantity is deter-
mined for all 361 ensembles in the dataset, it is averaged over the dataset to obtain the
composite lower bound of the overall ensemble’s range of rmse. For additional reference,
the composite median value of rmse is obtained for both the basic ensemble and the set
of pair-wise filtered states. The composite results are displayed in Fig. 7, and readily
afford several suggestions. For instance, the relative position of the tops of the two bar
diagrams indicates that the maximum value of rmse in any set of filtered states tends to
be considerably less than that in the corresponding basic ensemble. Also, the position of
the bottoms of the two bar diagrams relative to each other and to the line representing
the composite lower bound of the overall ensemble’s range of rmse indicates that the

minimum rmse in any set of filtered states tends to be less than that in both the basic



16

and overall ensembles. Finally, the relative position of the two line segments representing
the composite median values of rmse suggests that the median rmse within any set of
filtered states tends to be considerably less than that in the basic ensemble. Thus, on a
composite basis, the set of pair-wise filtered states exhibits lower values of rmse than the
operational ensemble does for at least three quantities: maximum, minimum, and me-
dian rmse. The fact that the composite minimum rmse for the set of filtered states is less
than the composite minimum rmse within the overall ensemble is particularly important,
because it is preliminary indication that the crucial event E; of Section 4d frequently
occurs and, by extension, that the pair-wise filtering process can consistently identify a
set of states that are less corrupted by stochastic errors than the operational members

are.
f Daily Relative Comparison

Additional insight can be gained by evaluating the pair-wise filtered state distri-
bution’s associated rmse values in relation to those of the operational ensemble on an
ensemble-by-ensemble basis. For the assessment that follows, all 55 pair-wise filtered
states were generated for each of the 361 operational ensembles in the dataset, and the
rmse of each filtered state (as well as each operational member) was subsequently cal-
culated. Additionally, for each of the 361 ensembles the overall operational member
associated with the smallest value of rmse (hereafter referred to as the "best” overall
operational member) was identified, and its value of rmse was used as a benchmark for
comparison. To begin with the assessment, Fig. 8 displays for each of the 361 ensembles
the number of filtered states with less rmse than the best overall operational member. It
is inferred right away that for a great majority of the ensembles a filtered state exists that
outperforms the best overall member. Indeed, this is true for 332 (or 92%) of the 361
ensembles. What is more, usually there is more than one filtered state that outperforms

the best overall member. Specifically, on average there are ~ 4.6 filtered states with
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less rmse than the best overall member. In other words, this means that for any given
ensemble one can expect to find four or five filtered states with less rmse than the best
overall member.

It remains to be seen just how much improvement in rmse might be associated with
any one of these filtered states. To address this, Fig. 9 displays for each of the 361
ensembles the percentage improvement, in terms of rmse and relative to the best overall
operational member, associated with the filtered state with the lowest rmse (hereafter
referred to as the "best” filtered state). Readily apparent in the figure is that the per-
centage improvement frequently is at least 5%, and sometimes exceeds 10%. The average
percent improvement is 5.2%, the minimum percent improvement is -9.6% (attained in
association with the 10 October 2003 ensemble), and the maximum percent improvement
is 20.0% (attained in association with the 09 February 2003 ensemble). Figure 10 provides
a precise breakdown of the number of best filtered states whose percentage improvement
in rmse falls within a given range of values. It was stated previously that fully 332 of
361 best filtered states (or ~ 92%) register some finite positive percentage improvement
relative to the best overall ensemble member. Now it can also be inferred from Fig. 10
that 180 of 361 best filtered states (or &~ 50%) register > 5% improvement, and that 36
of 361 best filtered states (or ~ 10%) register > 10% improvement. Stated differently,
these results indicate that about one of every two ensembles will have an associated best
filtered state that affords > 5% improvement in rmse relative to the best overall solution
of the given ensemble, and that about one of every 10 ensembles will have an associated
best filtered state that affords > 10% relative improvement.

To reiterate, the collective results presented in Figs. 8-10 show that a vast majority of
the time the distribution of pair-wise filtered states will contain multiple states that have
less rmse than the best overall operational member, and that frequently the distribution
contains at least one state whose rmse is a notable improvement relative to that of the

best overall operational member. These results are essential because they demonstrate
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that the event E) of Section 4d occurs on a very consistent basis. In other words, in
accordance with the argument presented in Section 4d, these results establish that the
distribution of pair-wise filtered states does, in fact, contain states that are generally less

corrupted by stochastic errors than any operational members are.
5. Performance differentials within the distribution of filtered states

To this point the concern has been with a relative comparison of the pair-wise filtered
states’ performance and that of the operational members. Further understanding of the
filtering process ultimately can be gained by examining the question of whether certain
filtered states systematically prove more effective than others. Evidence that suggests
an affirmative answer to this question is, in fact, forthcoming from at least two different

perspectives.
a. Probabilistic Perspective

A probabilistic modelling perspective provides insight into two variations on the
above question: 1) Do certain subsets of the filtered states account for a disproportionate
number of the states that yield the most notable (i.e > 10%) relative improvement?, and
2) Do certain subsets of the filtered states account for a disproportionate number of
the "best” filtered states (i.e the filtered states with the minimum rmse for any given
ensemble)?

Regarding the first of these questions, consider that 36 of the 361 best filtered states in
the current work afforded > 10% improvement over the best overall operational member,
and that 33 of these 36 filtered states were identified with the subset comprised of filtered
states based upon one or more of the top five basic members most distant from the
ensemble mean (i.e. Ny, Ny, N3, Ny, Ns), Sips. Examples of states in this subset
include N;C5, NyN4, NyNs, NyN1g, N3Ny, etc. Examples of states not in this subset

include Ng N7, NgCs, NgNjp, etc. The question is whether one could simply attribute the
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identification of those 33 filtered states with Si,,5 to chance, given that a total of 260
of the 361 best filtered states were identified with S;,ps5. The procedure for answering
this question is as follows. First, the variable n is defined to be the number of the 36
filtered states associated with > 10% improvement that are identified with Si,ps through
chance. Then, the probability mass function of n is calculated, and this function is
used to perform an inference test on whether the event that 33 of the filtered states
are identified with S;,ps can be attributed to chance or not. The null hypothesis of the
inference is that the event is a manifestation of chance, and the significance level of the
inference is determined directly from the probability mass function as the probability
of identifying n => 33 filtered states with S;,5. If this probability is less than some
arbitrary threshold, say 1%, then the null hypothesis is rejected and the event is assumed
not to be a manifestation of chance. Two small steps facilitate an understanding of where
the expression for the probability mass function comes from. The first is to refer to each
of the 36 filtered states that afforded > 10% improvement as a ”success”, for ease of
discussion. The second is to restate the question posed above as, ”If one has a sequence
of 361 elements comprised of 36 successes and 325 non-successes in an arbitrary order,
what is the probability of finding n successes in an arbitrary sample of 260 of the 361

elements?” This probability is readily computed as

36 361 — 36
n 260 — n
P(n) =
361
260
where
a al
p | (a—b)"

The lefthand term in the numerator is the number of ways to sample n of the 36 suc-

cesses when order of selection doesn’t matter, the righthand term in the numerator is



20

the number of ways to sample 260-n of the 325 non-successes when order of selection
doesn’t matter, and the term in the denominator is the number of ways to sample 260 of
the total of 361 elements when order of selection doesn’t matter. Given this expression
for P(n), the corresponding probability mass function is obtained by computing P(n)
forn =0,1,...,36. Carrying out the probability mass function calculations and perform-
ing the inference test, it is found that the probability of identifying with Sy,,5 through
mere chance n => 33 filtered states associated with > 10% improvement is 2.721073.
Furthermore, the number of filtered states expected to be identified with S5 is only
25.9. Thus, there is strong evidence that S5 is what might be considered a ”preferred
source” of the filtered states associated with the most notable (i.e. > 10%) improvement
over the best overall member.

A similar analysis can be performed for the case of subset S;op4, comprised of filtered
states based upon one or more of the top four basic members most distant from the
ensemble mean (i.e. Ny, No, N3, N,). Consider that 30 of the 36 best filtered states that
afforded > 10% improvement over the best overall operational member were identified
with Si,p4, and that 223 of the 361 best filtered states were identified with S;,p4. Carrying
out the analysis with these numbers, it is found that the probability of identifying with
Stops through mere chance n => 30 filtered states associated with > 10% improvement
is 3.121073. Furthermore, the number of filtered states expected to be identified with
Siopa is only 22.2. Thus, as with Si,ps5, there is strong evidence that Sy, is what might
be considered a ”preferred source” of the filtered states associated with the most notable
(i.e. > 10%) improvement over the best overall operational member.

One additional observation makes the findings related to Siop4 and S;ps more mean-
ingful. This is that the pair-wise filtered states that comprise S;,ps and Siops are based
upon operational members relatively distant from the ensemble mean, and as such rep-
resent combinations of members that are the most different from one another in a root-

mean-square sense. Given this observation, the above findings carry the implication that
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pair-wise filtering is most effective at realizing relative improvement in rmse when the
basic members of a given pair-wise filtered state are not very similar in pattern.
Regarding the second question above, it is readily determined that at least one subset
of the filtered states does account for a disproportionate number of the ”best” filtered
states. Consider some subset S of the 55 filtered states, of size m. If each of the 55 filtered
states for a given ensemble is equally likely to be the best-performing filtered state, then
the probability that the best filtered state will be identified with subset S is p = m/55.
Assuming for simplicity that the identity of the best filtered state for a given ensemble is
independent of the identities of the best filtered states in other (past) ensembles, then the
number of times in a sample of n ensembles that the best filtered state is identified with
subset S can be modelled as a binomially distributed random variable with expected
value E = np = nm/55. Now, consider in particular the subset comprised of the 10
filtered states that are based upon the control (N,Cs, NoCy, N3Cs,....,N19Cs), Se2. With
the sample of n = 361 ensembles available for the current work, the number of times that
the best filtered state is identified with S, is expected to be E = 361-10/55 =~ 66. Upon
inspection, the best filtered state is found in S.; 91 times, or about 40% more often
than might be expected. Furthermore, the probability of the best filtered state being
identified with S.; through mere chance 91 or more times is only 5.5z10%. Thus, the
inference is that random processes are highly unlikely to account for there being so many
best filtered states identified with S.,. It follows, then, that S., could be considered a
so-called ” preferred origin” of the best filtered state. Upon reflection, this finding should
not be considered a surprise, as it probably is a manifestation of the fact that in terms
of rmse the control forecast is better than the perturbed members on a systematic basis.
Nonetheless, it is more evidence that there are discernible performance differences within

the distribution of pair-wise filtered states itself.

b. Anomaly projection perspective
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An alternative and entirely different perspective from that of probabilistic modelling
also suggests that certain pair-wise filtered states systematically prove more effective than
others. To understand the basis of this perspective, consider first each basic ensemble
member’s anomaly relative to the ensemble mean. For any basic member of a given
ensemble, this anomaly is simply defined to be the field obtained by taking the gridpoint-
by-gridpoint difference between the basic member and the ensemble mean. The anomaly

projection of any two different anomaly fields can also be defined as

(AB)
T JAlBIe

where the anomaly fields are assumed to be in vector form, () denotes an inner product,
and || denotes vector magnitude. The anomaly projection may assume any value in
the spectrum -1 to 1, and measures the two anomaly fields’ similarity in terms of both
pattern and sign. The absolute value of the projection measures the similarity of the
two anomaly fields’ patterns: The larger this value is, the more similar the two fields’
patterns are. The sign of the projection indicates whether the two anomaly fields tend
to have the same or opposite sign: If the projection is positive (negative), then the two
fields tend to have the same (opposite) sign.

Each pair-wise filtered state is associated with an anomaly projection, for the reason
that each filtered state is based upon two different basic members and these two members’
anomaly fields have a certain anomaly projection. This is a relevant fact because there
are suggestions that the performance of each filtered state is to some extent a function of
its anomaly projection value. To see where these suggestions arise requires the following
analysis. First, for any given ensemble, the 55 filtered states are sorted from smallest to
largest in terms of rmse. Next, the filtered state with the smallest rmse is assigned rank
1, the filtered state with the second smallest rmse is assigned rank 2, and so forth, until
the filtered state with the largest error is assigned rank 55. Then, the anomaly projection

corresponding to a given filtered state is assigned the same rank as the filtered state. That
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is, the anomaly projection corresponding to the filtered state with rank 1 is put in a rank
1 ”bin”, the anomaly projection corresponding to the filtered state with rank 2 is put in
a rank 2 ”bin”, etc. The preceding steps are carried out for every available ensemble.
At the culmination of this effort, a record is obtained of the anomaly projection values
associated with each of the 55 ranks. In other words, with the sample of 361 ensembles
available for this work, the 361 anomaly projection values associated with rank 1 are
obtained, the 361 anomaly projection values associated with rank 2 are obtained, and so
forth. This record can be used to assess whether specific forecast ranks of interest are
characteristically populated by filtered states with a certain type of projection value.
For the current work, the record was tabulated using the entire sample of 361 ensem-
bles. Figure 11 displays some standard statistics of the projection values associated with
each of the 55 ranks, as derived from this record. First, consider the ranks associated
with the worst rmse, ranks 45-55. Both the mean and median anomaly projection values
for each of these ranks are substantially more positive than the overall mean projection
value, and both the mean and median projection values for each of the ranks 50-55 are
positive. The standard deviation of projection value for each of the forecast ranks 45-55
is also relatively low, indicating that the anomaly projections for these ranks do not tend
to depart far into the negative part of the spectrum. To add emphasis to these points,
it is found that fully 329 (or ~ 91%) of the 361 anomaly projection values associated
with rank 55 are positive (not shown). Thus, there are clear indications that the ranks
associated with the worst rmse (i.e. ranks 45-55) tend to be populated by filtered states
with anomaly projections in or very near the positive part of the spectrum. Consider
also the ranks associated with the best rmse, ranks 1-5. Both the mean and median
anomaly projection values for each of these ranks are negative, indicating that there is
some inclination for these ranks to be populated by filtered states with negative anomaly
projections. Indeed, it is found that 245 (or ~ two-thirds) of the 361 anomaly projection

values associated with rank 1 are negative. However, Fig. 11 also reveals that the mean
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anomaly projection value for each of the ranks 1-5 is quite close to the overall mean pro-
jection value, rather than substantially less than it. In addition, the standard deviation
of projection value for each of the ranks is relatively high, indicating that the anomaly
projections for each rank generally have anywhere from large negative to small positive
values. Thus, it can be inferred from the above observations that the ranks associated
with the best rmse are, for the greater proportion of time, populated by filtered states
with negative anomaly projection values, and are populated for a lesser but not insignifi-
cant proportion of time by filtered states with relatively small positive anomaly projection
values. It can also be inferred that filtered states with moderate to large positive anomaly
projections do not populate these ranks with any substantial frequency. Collectively, the
observations from Fig. 11 regarding ranks 1-5 and 45-55 suggest that filtered states with
moderate or greater positive anomaly projection values tend not to perform as well as
filtered states with negative or small positive anomaly projection values. There is also
some suggestion that filtered states with positive projection values tend to perform worse
than filtered states with negative projection values. This last suggestion is bolstered by
observations of the anomaly projections associated with those best-performing filtered
states that afford > 10% relative improvement. In 31 of the 36 cases in which the best
filtered state affords > 10% improvement over the best overall operational member, the
best filtered state is associated with a negative anomaly projection. This is &~ 86% of
the time, clearly the much greater proportion. In 115 of the 124 cases in which the best
filtered state affords > 10% improvement over the best basic ensemble member, the best
filtered state is associated with a negative anomaly projection. This is ~ 93% of the
time, again clearly the much greater proportion. Additional analysis (not shown) reveals
one other suggestion. In particular, examination of the projections that populate rank
1 indicates that these projections are not generally any of those with the largest values
(either positive or negative) in any given set of projection values. Thus, while pair-wise

filtered states that have large positive projection values tend to perform the worst, pair-
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wise filtered states that have large negative projection values do not tend to perform the
best. Taking this suggestion together with the other findings, the overall impression is
that the best performing pair-wise filtered states tend to be those with moderate to small
negative anomaly projection values. The practical interpretation that follows is that the
pair-wise filtering process is most effective when the two basic members of a filtered state
have anomaly fields that are only modestly similar in pattern and that are of generally

opposite sign.
6. Discussion and Conclusions

This paper has two main objectives. One is to introduce an ensemble post-processing
methodology designed to counter the effect of stochastic model errors on ensemble covari-
ance. The first step in the methodology is to perform a series of filtering experiments on
the operational ensemble members, with the aim of obtaining a set of states with reduced-
amplitude stochastic error components. Since inquiry into the methodology requires that
some form of filtering scheme be established, the other main objective of this paper is to
define and evaluate a prototype filtering scheme. This scheme, referred to as ” pair-wise”
filtering, involves forming all possible pairs of operational members and then averaging
the members in each pair. In the evaluation of the scheme, emphasis is placed on the
outstanding issue of whether the pair-wise filtered states are, in general, less corrupted
by errors of stochastic origin than the operational members are. It is argued, based upon
elementary probabilistic concepts, that the pair-wise filtered states must generally be less
corrupted if the lower bound of their range of rmse is very consistently smaller than the
lower bound of the overall ensemble’s range of rmse. With this idea as a guideline, 361
different NCEP GFS 0000UTC initialization 2.5°-by-2.5° resolution 11-member ensemble
forecasts of 192h leadtime 500 hPa geopotential height are analyzed. This large sample
of ensembles spans the period 0000UTC 21 December 2002 to 0000UTC 21 December

2003. All (55) possible pair-wise filtered states are derived for each of the 361 ensem-
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bles, and the performance of each set of filtered states is subsequently verified. Results
of the analysis show that for fully 332 (or 92%) of the 361 ensembles examined the set
of pair-wise filtered states contains at least one state that outperforms the best overall
operational member (including the control, the perturbed members, and the ensemble
mean) in terms of rmse. In fact, for each of the 361 ensembles there are, on average, 4-5
filtered states that have lower rmse than the best overall operational member. Further
analysis shows that it is not uncommon for the set of filtered states to include at least one
state which affords what might be termed noteworthy improvement (i.e. improvement of
5% or more) in rmse relative to the best overall operational member. Specifically, about
one of every two sets of filtered states yields such a state. Additionally, about one of
every 10 sets of filtered states yields a state that affords > 10% improvement in rmse
relative to the best overall operational member. The maximum observed improvement of
a filtered state relative to the best overall operational member is 20.0%. To summarize,
the analysis of the 361 ensembles indicates that a vast majority of the time the set of
pair-wise filtered states contains multiple states that have less rmse than the best overall
operational member, and also that the set often contains at least one state whose rmse
is a noteworthy improvement relative to that of the best overall operational member.
Recalling the arguments of Section 4d, the above findings support the conclusion that
for any given ensemble forecast the pair-wise filtered states are, in general, less corrupted
by errors of stochastic origin than the operational members are. These findings affirm
the utility of the simple pair-wise filtering procedure and hence encourage preliminary re-
search regards the second part of the proposed post-processing methodology, which is the
generation of a hybrid ensemble using some subset of the filtered states. Whether or not
a hybrid ensemble can exhibit improved covariance and provide better multi-dimensional
probabilistic forecasts is the issue that now takes precedence. McLay and Martin (2005)
investigate the hybrid ensemble generation problem via idealized experiments and prob-

abilistic forecast evaluations.
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Some attention is also devoted in the present paper to the question of whether certain
pair-wise filtered states are systematically more effective than others. Indeed, through
probabilistic modelling, two subsets emerge as being preferred sources of those filtered
states that yield the most noteworthy relative improvement in rmse (> 10%). These
subsets include the one comprised of filtered states based upon one or more of the top
four operational members most distant from the ensemble mean (S;,4), and the one
comprised of filtered states based upon one or more of the top five operational members
most distant from the ensemble mean (Siyp5). These subsets are ”preferred” sources in
the sense that the filtered states associated with the most notable relative improvement
originate from these subsets significantly more often than can be expected through mere
chance. The findings related to Sy,psa and Syeps are interesting when it is considered that
the pair-wise filtered states that comprise Si,ps and Siyps are based upon operational
members relatively distant from the ensemble mean, and as such represent combinations
of members that are the most different from one another in a root-mean-square sense.
The implication, then, is that pair-wise filtering is most effective at eliminating stochastic
error components when the two operational members of a given filtered state are fairly
dissimilar. It could be reasoned that this is to be expected, on the grounds that the more
dissimilar two members are, the more likely it is that the stochastic errors in the two
members are different and, therefore, the more likely it is that the averaging process will
produce a state with diminished stochastic errors.

Other suggestions of systematic performance differentials are gained by assessing the
pair-wise filtered states’ rmse performance as a function of so-called anomaly projec-
tion value. Each filtered state in a given set is associated with an anomaly projection
value, because each of the two basic members upon which the filtered state is based is
associated with an anomaly field relative to the ensemble mean and the two basic mem-
bers’ anomaly fields have a certain projection onto one another. Two suggestions are

engendered by the anomaly projection value analysis. One is that filtered states with
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moderate or greater positive anomaly projection values tend not to perform as well as
filtered states with negative or small positive anomaly projection values. The other is
that filtered states with negative anomaly projection values tend to perform better than
filtered states with positive anomaly projection values, though not overwhelmingly so.
The practical interpretation of these two suggestions is that pair-wise filtering will be
most effective when the operational members of a given pair have anomaly fields that are
both somewhat similar in pattern and generally of opposite sign. In such a case there
will be some cancellation of anomaly field components during the averaging process, but
the cancellation will fall short of being wholesale. This will allow for some stochastic
error components to be eliminated, but at the same time will ensure that a fair amount
of any legitimate information found in the anomaly fields will be retained. The anomaly
projection results are consistent with those gained from the probabilistic modelling, in
the sense that they also indicate that pair-wise filtered states are most effective when
based upon operational members that don’t have great similarities in pattern.

It is noted, finally, that while the systematic performance differentials highlighted
via the probabilistic modelling and anomaly projection analysis help to reveal the cir-
cumstances in which pair-wise filtering is most effective, they may also be of practical
consequence. This is for the reason that knowledge of the performance differentials might
be exploited in efforts to select subsets of the pair-wise filtered states for incorporation

into hybrid ensembles.
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Figure Captions 33

Figure 1. Conceptual depiction of forecast trajectories evolved with the dynamics of the
real atmosphere and of a numerical model. The light grey striped shading represents an
initial PDF, and the grey dot represents an initial state sampled from the PDF. Black
solid arrow (dashed arrow) is the forecast trajectory evolved from the initial state using
the dynamics of the real atmosphere (of a numerical model). Time increases from left to

right, as indicated by the axis at the bottom of the figure.

Figure 2. Conceptual depiction of errors introduced by a numerical model. Same as for
Fig. 1, except that the open circle (black dot) represents the state at time t on the forecast
trajectory evolved with the dynamics of the real atmosphere (of a numerical model). The
difference between the two states, represented as the thick solid grey arrow, defines the

errors introduced into the forecast as of time t by the numerical model.

Figure 3. Illustration of the nature of the error component associated with systematic
processes. The box encompasses a two-dimensional forecast sample space for some time
t. Each open circle m; (black dot n;) represents the forecast state obtained by evolving
some initial state S; forward in time using the dynamics of the real atmosphere (of a

numerical model). A grey arrow represents the error associated with each n;.

Figure 4. Illustration of the nature of the error component associated with stochastic

processes. Symbology the same as for Figure 3.



Figure 5. Two simple illustrations of the effect of averaging two dissimilar vectors. 34
Each panel represents a two-dimensional space, with coordinate axes given as thin solid
lines. In each panel, two dissimilar vectors are represented as solid black arrows. The
average of the two dissimilar vectors is represented as a dotted black arrow. Note that the

average vector has smaller magnitude than either of the two vectors it derives from.

Figure 6. Several conceptualizations of the scenario wherein the possible true states are
all grouped near a small proportion of the filtered states. Each panel encompasses the
sample space for some ensemble forecast. In each panel the forecast state associated with
a given ensemble member is represented as a large dot, and the pair-wise samples
associated with each pair of ensemble members are represented as X’s. The continuum
of possible true states is defined with grey shading. In each of these examples the event
E, is very likely to occur just because the possible true states are all grouped near the

pair-wise samples with asterisks.

Figure 7. Composite range of 192h 500 hPa geopotential height rmse (m) for a) the basic
operational ensemble and b) the distribution of pair-wise filtered states. In each case the
composite range of rmse is delimited by a grey shaded box and the composite median
rmse is depicted with a dashed line. The composite lower bound of the overall

operational ensemble’s range of rmse is depicted with the dotted line.

Figure 8. Number of pair-wise filtered states whose 192h 500 hPa geopotential height

rmse is less than that of the best overall operational member, for each of the 361



ensembles available between 21 December 2002 and 21 December 2003. Each bar
represents the number of filtered states for a specific ensemble. The bars are arranged in
chronological order, beginning with the bar for the 21 December 2002 ensemble in the
upper left corner and proceeding left-to-right and top-to-bottom. The labels ‘J°, ‘F’, ‘M’,
etc. identify the bars associated with the ensembles on the first day of January, February,
March, and so forth. The number of filtered states associated with a given bar is
determined by the scale on the ordinate of each rectangular plot. The bold horizontal line
indicates the average over all 361 ensembles of the number of pair-wise filtered states

whose rmse is less than that of the best overall operational member.

Figure 9. The best pair-wise filtered state’s percentage improvement in 192h 500 hPa
geopotential height rmse relative to the rmse of the best overall operational member, for
each of the 361 ensembles available between 21 December 2002 and 21 December 2003.
Each bar represents the percentage improvement for a specific ensemble. The percentage
improvement associated with a given bar is indicated by the scale on the ordinate of each
rectangular plot. The bold horizontal line indicates the average over all 361 ensembles of
the best filtered state’s percentage improvement in rmse. Layout otherwise the same as

for Figure 8.

Figure 10. Number of best filtered states whose percentage improvement, a, in 192h 500
hPa geopotential height rmse relative to the rmse of the best overall operational member
lies within a specified range. The abscissa indicates the number of best filtered states.

The ranges of percentage relative improvement are given along the ordinate. Bars with



light (dark) grey shading are associated with best filtered states that yield positive 36

(negative) percentage relative improvement.

Figure 11. Mean and median anomaly projection value, and mean anomaly projection
value plus or minus one standard deviation, as a function of forecast rank. Forecast rank
is given on the abscissa and anomaly projection value is given on the ordinate. The “+”
(“*”) symbols indicate the mean (median) anomaly projection value associated with each
forecast rank. The upper (lower) sequence of diamond symbols denotes for each forecast
rank the mean anomaly projection value plus (minus) one standard deviation. The grey

horizontal dashed line indicates the mean anomaly projection value for all forecast ranks.
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