APPENDIX B1

GRID DIAGNOSTIC FUNCTIONS

The following describes the computation of GEMPAK grid diagnostic functions.

Each grid in a grid file is identified by a parameter name, time, level, and vertical coordinate. A scalar grid is a single grid, while a vector grid is composed of two grids containing the u and v components.

The parameter name is used to retrieve a grid from the file, with a few exceptions: Certain special parameters will be computed from other data in the grid file if the parameter name itself is not found in the grid file. These special scalar parameters are

TMPK	DWPK	TVRK	MIXR*	THTA*	DRCT	TMWK*
TMPC	DWPC	TVRC	SMXR	STHA	SPED	TMWC
TMPF	DWPF	TVRF	MIXS	THTE*	RELH	TMWF
		THES*	SMXS	STHE		

where * indicates names which also may be used as operators. Mixing ratio will be computed automatically from dewpoint temperature, specific humidity or vapor pressure, if a pressure grid exists.

The stability indices will be computed automatically from temperature, dewpoint temperature, and wind speed and direction. These special scalar parameters are

CTOT VTOT TOTL KINX SWET

Haines Indices for fire weather detection will be computed automatically from temperature and dewpoint at three different levels. These scalar parameters are:

LHAN	Low elevation Haines Index
MHAN	Middle elevation Haines Index
HHAN	High elevation Haines Index

The Heat Index, HEAT, will also be automatically computed from the temperature and relative humidity.

In addition, precipitation will be converted from inches (I) to millimeters (M) and vice versa, if the grids are named P__M or P__I. The middle numeric characters give the time interval over which the precipitation accumulated. For example, P24M is a 24-hour precipitation total.

The units for sea surface temperature (SST_), maximum temperature (TMX_) and minimum temperature (TMN_) will be converted automatically. The underscore may

be K, C or F.

These special scalar parameter names denote constant value grids:

DTR	Conversion factor for degrees to radians = PI / 180		
E	Base of natural logarithms	= 2.71828182	
GRAVTY	Gravitational constant	= 9.80616 (note spelling)	
KAPPA	Gas constant/specific heat	= 2/7	
PI		= 3.14159265	
RTD	Conversion factor for radians to	degrees = 180 / PI	
nnn	Any number (i.e., 2, -10.2,)		

Another class of special parameter names provides information at grid points depending on the navigation of the grid file:

Coriolis force = 2. * OMEGA * SIN (LATR)
Latitude in radians
Longitude in radians
Value of the x coordinate in graph coordinates
Value of the y coordinate in graph coordinates
Map scale factor in the x direction
Map scale factor in the y direction
Land array; land=1, sea=RMISSD
Sea array; sea=1, land=RMISSD

Finally, scalar grids may be identified by their location within the grid file. The grid number must be prefixed with the symbol #. Note that grids may be renumbered as grids are added to or deleted from the file.

Vector grids are two separate grids containing the u and v components. Special vector parameter names may be used to identify the following vectors:

WND	Total wind
GEO*	Geostrophic wind
AGE*	Ageostrophic wind
ISAL*	Isallobaric wind
THRM*	Thermal wind

where * indicates names that also may be used as operators. Note that all of these wind vectors will have u and v components in meters per second. The total wind must be stored as UWND and VWND in the grid file if the components are north relative and as UREL and VREL if the components are grid relative.

Time, level, and vertical coordinate may be specified in GDATTIM, GLEVEL and GVCORD. However, any of these values may be overridden by in line parameters appended to an operand in the form of ^time@level%ivcord. In-line parameters are only allowed for operands, since they modify parameters for individual grids. The in-

line parameters may be entered individually or in combinations in any order.

If more than one file is opened, +n may also be used as an in-line parameter, where n is the number corresponding to the position of the file name entered in GDFILE. If +n is omitted, the first file is used.

Grid operators may be nested, allowing a complicated diagnostic function to be computed. One limitation is that layer and time range operators expect to work on operands read directly from the grid file or computed from special names.

In the following list of diagnostic operators, scalar operands are named Si and vector operands are Vi. Lower case u and v refer to the grid relative components of a vector. All meteorological output grids are in MKS units, except as noted. Operators using PR_ functions are described in the GEMPAK PARAMETER APPENDIX. All scalar and vector differential operators are valid in any map projection for which the map scale factors can be computed. At present, this applies for the stereographic, cylindrical and conic projections available in GEMPAK. In the definitions below, only the cartesian form of the operators is shown. The general curvilinear coordinate forms involving the scale factors are not given.

The operators which are designated for use in polar coordinates are specific to that coordinate system.

SCALAR OUTPUT GRID

Algebraic and trignometric functions (angles are expressed in radians):

ABS	Absolute value ABS (S)
ACOS	Arc cosine function ACOS (S)
ASIN	Arc sine function ASIN (S)
ATAN	Arc tangent function ATAN (S)
ATN2	Arc tangent function ATN2 (S1, S2) = ATAN (S1 / S2
COS	Cosine function COS (S)
EXP	Exponential to real EXP (S1, S2) = S1 ** S2
EXPI	Exponential to integer

)

	EXP (S1, S2) = S1 ** NINT (S2)
LN	Natural logarithm LN (S) = LOG (S)
LOG	Base 10 logarithm LOG (S) = LOG10 (S)
SIN	Sine function SIN (S)
SQRT	Square root SQRT (S)
TAN	Tangent function TAN (S)
ADD	Addition ADD $(S1, S2) = S1 + S2$
MUL	Multiplication MUL (S1, S2) = S1 * S2
QUO	Division QUO (S1, S2) = S1 / S2
SUB	Subtraction SUB (S1, S2) = S1 - S2
SLT	Less than function
SLE	SLT $(S1, S2) = S1 < S2$ Less than/equal to
SGT	SLE $(S1, S2) = S1 \le S2$ Greater than function
SGE	SGT $(S1, S2) = S1 > S2$ Greater than/equal to
SBTW	SGE (S1, S2) = S1 >= S2 Between function SBTW (S1, S2, S3) = S1 > S2 AND S1 < S3
BOOL	Boolean function BOOL (S)
MASK	Masking function MASK (S1, S2) = RMISSD IF S2 = RMISSD, = S1 otherwise
MISS	Missing value replace MISS (S1, S2) = S2 if S1 = RMISSD, = S1 otherwise
ADV	Advection ADV(S, V)= -(u * DDX(S)+ v * DDY(S))
AVG	Average

	AVG (S1, S2) = (S1 + S2) / 2
AVOR	Absolute vorticity AVOR (V) = VOR (V) + CORL
BVSQ	Brunt-Vaisala frequency squared in a layer BVSQ (THTA) = [GRAVTY * LDF (THTA)] / [LAV (THTA) * DZ] in PRES coor- dinates
	= -(RDGAS / GRAVTY) * LAV (THTA) *(LAV (PRES) / 1000) ** KAPPA * LDF (PRES) / LAV (PRES) in THTA coordinates
	DZ = change in height across the layer
CROS	Vector cross product magnitude CROS (V1, V2) = u1 * v2 - u2 * v1
DDEN	Density of dry air (kg / m**3) DDEN(PRES, TMPC)= PR_DDEN(PRES, TMPC)
DDR	Partial derivative with respect to R DDR (S) is computed using centered finite differences, with backward or forward differences at the boundary. Polar coordinates are assumed, and (R, THETA) maps into (X, Y).
DDT	Time derivative DDT (S) = (S (time1) - S (time2)) / (time1 - time2) where the time difference is in seconds.
DDX	Partial derivative with respect to X DDX (S) is computed using centered finite differences, with backward or forward differences at the boundary.
DDY	Partial derivative with respect to Y DDX (S) is computed using centered finite differences, with backward or forward differences at the boundary.
DEF	Total deformation DEF (V) = (STR (V) ** 2 + SHR (V) ** 2) ** .5
DIRN	North relative direction of a vector DIRN (V) = PR_DRCT (UN (V), VN (V))
DIRR	Grid relative direction of a vector DIRR(V)= PR_DRCT(u, v)
DIV	Divergence DIV (V) = DDX (u) + DDY (v)
DOT	Vector dot product DOT (V1, V2) = u1 * u2 + v1 * v2
DTH	Partial derivative with respect to THETA DTH (S) is computed using centered finite differences, with backward or forward differences at the boundary. Polar coordinates are assumed, and (R, THETA) maps into (X, Y).
FOSB	Fosberg index, also called Fire Weather Index. FOSB (TMPC, RELH, SPED) is computed with an empirical formula using sur- face temperature, relative humidity, and wind speed at the 2 meter or 10 meter level, or the mix of the two. High values in-

dicate high flame lengths and rapid drying.

FCNT	Coriolis force at the center of a polar coordinate grid FCNT (S) can be computed only for lat/lon grids which have been mapped to po- lar (R,THETA) coordinates and or which the center lat/lon have been stored with each grid.
FRNT	Frontogenesis (K / 100 km / 3 h) FRNT (THTA, V) = 1/2 * CONV * MAG (GRAD (THTA)) * (DEF * COS (2 * BE- TA) - DIV)
	CONV = unit conversion factor = 1.08E4 * 1.E5
	BETA = ASIN ((- COS (DELTA) * DDX (THTA) -
	SIN (DELTA) * DDY (THTA) /
	MAG (GRAD (THTA)))
	DELTA = 1/2 ATAN (SHR / STR)
GWFS	Horizontal smoothing using normally distributed weights GWFS (S,N) with theoretical response of 1/e for N * delta-x wave. Increasing N increases the smoothing.
HIGH	Relative maxima over a grid HIGH (S, RADIUS) where RADIUS defines a square region of grid points. The region is a moving search area in which all points are com- pared to derive a relative maximum.
JCBN	Jacobian determinant JCBN (S1, S2) = DDX (S1) * DDY (S2) - DDY (S1) * DDX (S2)
KNTS	Convert meters / second to knots KNTS (S) = PR_MSKN (S) = S * 1.9438
LAP	Laplacian operator LAP(S)= DIV(GRAD(S))
LAV	Layer average (2 levels) LAV $(S) = (S (level1) + S (level2)) / 2.$
LDF	Layer difference (2 levels) LDF (S) = S (level1) - S (level2)
LOWS	Relative minima over a grid LOWS (S, RADIUS) where RADIUS defines a square region of grid points. The region is a moving search area in which all points are com- pared to derive a relative minimum.
MAG	Magnitude of a vector MAG(V)= PR_SPED(u, v)
MASS	Mass per unit volume in a layer MASS = 100 * LDF (PRES) / (GRAVTY * (level1 - level2))
	The 100 converts mb to Pascals. Level1 and level2 are also converted to Pascals when VCOORD = PRES. The volume is expressed in units of m * m * (units of the vertical coordinate). This is an operand.
MDIV	Layer-average mass divergence MDIV(V)= DIV([MASS * LAV (u), MASS * LAV (v)])
MIXR	Mixing ratio

	MIXR (DWPC, PRES) = PR_MIXR (DWPC, PRES)
	The units are kg/kg internally, but g/kg on output.
MRAD	Magnitude of storm relative radial wind MRAD (V, LAT, LON, DIR, SPD) = DOT (Vrel, R)
	where Vrel is the velocity minus the storm motion vector specified by DIR and SPD, and R is a unit vector tangent to a great circle arc from the storm center specified by LAT, LON to a grid point.
MSDV	Layer-average mass-scalar flux divergence MSDV (S, V) = DIV ([MASS * LAV (S) * LAV (u), MASS * LAV (S) * LAV (v)])
	Note: MASS is computed using the in-line parameter values for V rather than those for S.
MSFC	Psuedo angular momentum (for cross sections) MSFC(V)= NORMV(V)+ CORL * DIST
	DIST is the distance along the cross section in meters. The units for the M-sur- face are expressed in m/s.
MTNG	Magnitude of storm relative tangential wind MTNG (V, LAT, LON, DIR, SPD) = DOT (Vrel, k X R)
	where Vrel is the velocity minus the storm motion vector specified by DIR and SPD, and R is a unit vector tangent to a great circle arc from the storm center specified by LAT, LON to a grid point. k de- notes the local vertical unit vector.
NORM	Scalar vector component normal to a cross section NORM (V) = DOT (V, unit normal vector)
	If the starting point for the cross section is on the left, the unit normal vector points into the cross section plane.
PLAT	Latitude at each point in polar coordinates PLAT(S)
	Note: only the header, which contains the center latitude and longitude, is used.
PLON	Longitude at each point in polar coordinates PLON(S)
	Note: only the header, which contains the center latitude and longitude, is used.
POIS	Solve Poisson eqn. of a forcing function with the given boundary values POIS (S1, S2) where S1 is the forcing function grid and S2 is the boundary value.
	The equation LAP (POIS) = S1 is solved for POIS.
POLF	Coriolis force at each point in polar coordinates POLF(S)
	Note: only the header, which contains the center latitude and longitude, is used.
PVOR	Potential vorticity in a layer PVOR (S, V) = - GRAVTY * AVOR (VLAV (V)) * LDF (THTA) / (100 * LDF (PRES))
	The 100 converts millibars to Pascals.
	Units are Kelvins / meters / Pascals / seconds**3 (note that GRAVTY is included).

PVOR works on a layer

	in PRES or THTA co T ol ul	ordinates. In isobaric coordinates, the scalar operand, S, is HTA, THTE, or THES. In isentropic coordinates, the scalar perand, S, is PRES. Multiplying by 10**6 gives standard PV nits.
RELH	Relative humidity RELH (TEMP, DWP	T)= PR_RELH(TEMP, DWPT)
RICH	Richardson stability RICH (V) = GRAVTY	y number in a layer / * DZ * LDF (THTA) / (LAV (THTA) * MAG (VLDF (V)) ** 2)
	Note: DZ = change in	n height across the layer.
	RICH can be evaluat	ted in PRES, THTA or HGHT vertical coordinate.
ROSS	Rossby number ROSS (V1, V2) = M	AG(INAD(V1, V2)) /(CORL * MAG(V1))
SAVG	Average over whole SAVG (S) = average	grid e of all non-missing grid point values
SAVS	Average over subset SAVS (S) = average	t grid of all non-missing grid point values in the subset area
SDIV	Flux divergence of a SDIV (S, V) = S * D	a scalar V(V)+ DOT(V, GRAD(S))
SHR	Shear deformation SHR (V) = DDX (v)) + DDY (u)
SM5S	Smooth scalar grid SM5S (S) = .5 * S (i	using a 5-point smoother ,j) + .125 * (S (i+1,j) + S (i,j+1) + S (i-1,j) + S (i,j-1))
SM9S	Smooth scalar grid SM5S (S) = .25 * S (using a 9-point smoother i,j) + .125 * (S (i+1,j) + S (i,j+1) + S (i-1,j) + S (i,j-1)) + .0625 (S (i+1,j+1) + S (i+1,j-1) + S (i-1,j+1) + S (i-1,j-1))
STAB	Thermodynamic sta STAB (TMPC) = LD	bility within a layer (lapse rate) F(TMPC)/ DZ in PRES coordinates.
	= - (RDGAS / GRAV	/TY) * LAV (THTA) * (LAV (PRES) / 1000) ** KAPPA *
	LDF (PRES) / LAV (F	RES) in THTA coordinates
	DZ = change in heig	ht across the layer.
	Units are degrees / k	ilometer.
STR	Stretching deformat STR (V) = DDX (u)	ion - DDY(v)
TANG	Scalar vector comp TANG (V) = DOT (V	onent tangential to a cross section /, unit tangent vector)
	If the starting point fo to	r the cross section is on the left, the unit tangent vector points the right.
TAV	Time average (2 tim TAV (S) = (S (time1)	es) + S (time2)) / 2.
TDF	Time difference (2 ti	mes)

TDF(S) = S(time1) - S(time1)	time2)
------------------------------	--------

THES	Saturated equivalent potential temperature in Kelvin THES (PRES, TMPC) = PR_THTE (PRES, TMPC, TMPC)		
THTA	Potential temperature in Kelvin THTA (TMPC, PRES) = PR_THTA (TMPC, PRES)		
THTE	Equivalent potential temperature in Kelvin THTE (PRES, TMPC, DWPC) = PR_THTE (PRES, TMPC, DWPC)		
THWC	Wet bulb potential temperature in Celsius THWC (PRES, TMPC, DWPC) = PR_THWC (PRES, TMPC, DWPC)		
TMST	Parcel temperature in Kelvin along a moist adiabat TMST (THTE, PRES) = PR_TMST (THTE, PRES, GUESS)		
	where THTE is the equivalent potential temperature at the input GLEVEL,		
	PRES is the pressure level at which the parcel temperature is valid, and GUESS is a guess-field calculated automatically.		
тмwк	Wet bulb temperature in Kelvin TMWK (PRES, TMPK, RMIX) = PR_TMWK (PRES, TMPK, RMIX)		
UN	North relative u component UN (V) = zonal wind component		
UR	Grid relative u component UR (V) = u		
VN	North relative v component VN (V) = meridional wind component		
VOR	Vorticity VOR(V)= DDX(v)- DDY(u)		
VR	Grid relative v component VR (V) = v		
WNDX	WINDEX (index for microburst potential) WNDX (S1, S2, S3, S4) = 2.5 * SQRT (HGHTF * RATIO * (GAMMA**2 - MIXRS - 2 * MIXRF))		
	TMPCS = surface temperature = S1		
	HGHTF = AGL Height of Freezing level = S2		
	MIXRS = surface mixing ratio = S3		
	MIXRF = freezing level mixing ratio = S4		
	RATIO = MIXRS / 12 if MIXRS < 12, = 1 otherwise		
	GAMMA = TMPCS / HGHTF		
WSHR	Magnitude of the vertical wind shear in a layer		

	WSHR (V) = MAG [VLDF (V)] / DZ in PRES coordinates.		
	= - (RDGAS / GRAVTY) * LAV (THTA) * (LAV (PRES) / 1000) ** KAPPA *		
	LDF (PRES) / LAV (PRES) in THTA coordinates.		
	DZ = change in height across the layer		
	WSHR can be evaluated in PRES, THTA, or HGHT coordinate.		
XAV	Average along a grid row XAV (S) = (S (X1) + S (X2) + + S (KXD)) / KNT		
	KXD = number of points in row		
	KNT = number of non-missing points in row		
	XAV for a row is stored at every point in that row.		
	In polar coord., XAV is the average along a radial.		
XSUM	Sum along a grid row XSUM (S) = (S (X1) + S (X2) + + S (KXD))		
	KXD = number of points in row		
	XSUM for a row is stored at every point in that row. In polar coord., XSUM is the sum along a radial.		
YAV	Average value along a grid column YAV (S) = (S (Y1) + S (Y2) + + S (KYD)) / KNT		
	KYD = number of points in column		
	KNT = number of non-missing points in column		
	YAV for a column is stored at every point in that column. For polar coordinates, YAV is the average around a circle. If the theta coordinate starts at 0 degrees and ends at 360 degrees, the first radial is not used in computing the average.		
YSUM	Sum along a grid column SUM (S) = (S (Y1) + S (Y2) + + S (KYD))		
	KYD = number of points in column		
	YSUM for a column is stored at every point in that column. For polar coordinates, YSUM is the sum around a circle. If the theta coordinate starts at 0 degrees and ends at 360 degrees, the first radial is not used in computing the sum.		

VECTOR OUTPUT GRID

AGE Ageostrophic wind AGE (S) = [u (OBS) - u (GEO(S)), v (OBS) - v (GEO(S))]

- CIRC Circulation (for cross sections) CIRC (V, S) = [TANG (V), S]
- DVDX Partial x derivative of a vector DVDX (V) = [DDX (u), DDX (v)]

DVDY Partial y derivative of a vector

DVDY(V) = [DDY(u), DDY(v)]

GEO Geostrophic wind

GEO (S) = [-DDY (S) * const / CORL, DDX (S) * const / CORL]

const	S	vert coord
GRAVTY ZMSL	none	
GRAVTY HGHT	PRES	
1	PSYM	THTA
100/RO PRES	HGHT	

RO = PR_DDEN (PRES, TMPC)

GRAD Gradient of a scalar

GRAD (S) = [DDX (S), DDY (S)]

GWFV Horizontal smoothing using normally distributed weights

GWFV (V,N) with theoretical response of 1/e for N * delta-x wave. Increasing N increases the smoothing.

INAD Inertial advective wind

INAD (V1, V2) = [DOT (V1, GRAD (u2)), DOT (V1, GRAD (v2))]

ISAL Isallobaric wind ISAL (S) = [- DDT (v (GEO(S))) / CORL, DDT (u (GEO(S))) / CORL]

KCRS Unit vector k cross a vector KCRS (V) = [-v, u]

KNTV Convert meters / second to knots KNTV (V) = [PR_MSKN (u), PR_MSKN (v)]

LTRN Layer-averaged transport of a scalar

LTRN (S, V) = [MASS * LAV (S) * LAV (u), MASS * LAV (S) * LAV (v)] Note: MASS is computed using the in-line parameter values for V rather than those for S.

NORMV Vector component normal to a cross section. NORMV (V) = NORM (V) * unit normal vector

QVEC Q-vector at a level (K/m/s)

QVEC (S, V) = [- (DOT (DVDX (V), GRAD (S))), - (DOT (DVDY (V), GRAD (S)))] where S can be any thermal paramenter, usually THTA.

QVCL Q-vector of a layer (mb / m / s)

QVCL (THTA, V) = (1/(D (THTA) / DP)) * [(DOT (DVDX (V), GRAD (THTA))), (DOT (DVDY (V), GRAD (THTA)))]

RAD Storm relative radial wind RAD (V, LAT, LON, DIR, SPD) = SMUL (DOT (Vrel, R), R)

where Vrel is the velocity minus the storm motion specified by DIR and SPD, and R is a unit vector tangent to a great circle arc from the storm center specified by LAT, LON to a grid point.

ROT Coordinate rotation

ROT (angle, V) = [u * COS (angle) + v * SIN (angle), -u * SIN (angle) + v * COS (angle)]

SMUL Multiply a scalar with each component of a vector SMUL (S, V) = [S * u, S * v]

SM5V Smooth vector grid using a 5-point smoother SM5V (V) = .5 * V (i,j) + .125 * (V (i+1,j) + V (i,j+1) + V (i-1,j) + V (i,j-1))

SQUO Vector division by a scalar.

SQUO (S, V) = [u / s, v / s]

TANGVVector component tangential to a cross section.TANGV (V) = TANG (V) * unit tangent vector

THRM Thermal wind

THRM (S) = [u (GEO(S)) (level1) - u (GEO(S)) (level2), v (GEO(S)) (level1) - v (GEO(S)) (level2)]

TNG Storm relative tangential wind

TNG (V, LAT, LON, DIR, SPD) = SMUL (DOT (Vrel, k X R), k X R)

where Vrel is the velocity minus the storm motion vector specified by DIR and SPD, and R is a unit vector tangent to a great circle arc from the storm center specified by LAT, LON to a grid point. k denotes the local vertical unit vector.

VADD Add the components of two vectors

VADD (V1, V2) = [u1+u2, v1+v2]

VASV Vector component of V1 along V2

VASV (V1, V2) = [DOT (V1,V2) / MAG (V2) ** 2] * V2

VAVG Average over whole grid

VAVG (V) = average of all non-missing grid point values

VAVS Average over subset grid

VAVS (V) = average of all non-missing grid point values in the subset area

- VECN Create a vector grid from two north relative scalar components VECN (S1, S2) = [S1, S2]
- VECR Create a vector grid from two grid relative scalar components VECR (S1, S2) = [S1, S2]
- VLAV Layer average for a vector VLAV (V) = [(u(level1) + u(level2))/2., (v(level1) + v(level2))/2.]

VLDF Layer difference for a vector VLDF (V) = [u (level1) - u (level1), v (level1) - v (level2)]

- VMUL Multiply the components of two vectors VMUL (V1, V2) = [u1*u2, v1*v2]
- VQUO Divide the components of two vectors VQUO (V1, V2) = [u1/u2, v1/v2]
- VSUB Subtract the components of two vectors VSUB (V1, V2) = [u1-u2, v1-v2]
- VLT Less than function VLT (V, S) = V IF |V| < S
- VLE Less than or equal to function $VLE (V, S) = V IF |V| \le S$
- VGT Greater than function VGT (V, S) = V IF |V| > S
- VGE Greater than or equal to function VGE (V, S) = V IF |V| >= S
- VBTW Between function VBTW (V, S1, S2) = V IF S1 < |V| < S2
- VMSK Masking function VMSK (V, S) = RMISSD IF S = RMISSD = V otherwise