GEMPAK Grid Diagnostic Functions

APPENDIX B1
 GRID DIAGNOSTIC FUNCTIONS

The following describes the computation of GEMPAK grid diagnostic functions.
Each grid in a grid file is identified by a parameter name, time, level, and vertical coordinate. A scalar grid is a single grid, while a vector grid is composed of two grids containing the u and v components.

The parameter name is used to retrieve a grid from the file, with a few exceptions: Certain special parameters will be computed from other data in the grid file if the parameter name itself is not found in the grid file. These special scalar parameters are

TMPK	DWPK	TVRK	MIXR*	THTA	DRCT	TMWK*
TMPC	DWPC	TVRC	SMXR	STHA *	SPED	TMWC
TMPF	DWPF	TVRF	MIXS	THTE	RELH	TMWF

where * indicates names which also may be used as operators. Mixing ratio will be computed automatically from dewpoint temperature, specific humidity or vapor pressure, if a pressure grid exists.

The stability indices will be computed automatically from temperature, dewpoint temperature, and wind speed and direction. These special scalar parameters are
CTOT VTOT TOTL KINX SWET

Haines Indices for fire weather detection will be computed automatically from temperature and dewpoint at three different levels. These scalar parameters are:

$$
\begin{array}{ll}
\text { LHAN } & \text { Low elevation Haines Index } \\
\text { MHAN } & \text { Middle elevation Haines Index } \\
\text { HHAN } & \text { High elevation Haines Index }
\end{array}
$$

The Heat Index, HEAT, will also be automatically computed from the temperature and relative humidity.

In addition, precipitation will be converted from inches (I) to millimeters (M) and vice versa, if the grids are named P__M or P__I. The middle numeric characters give the time interval over which the precipitaion accumulated. For example, P24M is a $24-$ hour precipitation total.

The units for sea surface temperature (SST_), maximum temperature (TMX_) and minimum temperature (TMN_) will be converted automatically. The underscore may

GEMPAK Grid Diagnostic Functions

be K, C or F .

These special scalar parameter names denote constant value grids:

DTR	Conversion factor for degrees to radians $=$ PI $/ \mathbf{1 8 0}$	
E	Base of natural logarithms	$=2.71828182$
GRAVTY	Gravitational constant	$=9.80616$ (note spelling)
KAPPA	Gas constant/specific heat	$=2 / 7$
PI		$=3.14159265$
RTD	Conversion factor for radians to degrees $=180 /$ PI	
nnn	Any number (i.e., $2,-10.2, \ldots$)	

Another class of special parameter names provides information at grid points depending on the navigation of the grid file:

```
CORL Coriolis force = 2. * OMEGA * SIN ( LATR )
LATR Latitude in radians
LONR Longitude in radians
XVAL Value of the x coordinate in graph coordinates
YVAL Value of the y coordinate in graph coordinates
MSFX Map scale factor in the x direction
MSFY Map scale factor in the y direction
LAND Land array; land=1, sea=RMISSD
SEA Sea array; sea=1, land=RMISSD
```

Finally, scalar grids may be identified by their location within the grid file. The grid number must be prefixed with the symbol \#. Note that grids may be renumbered as grids are added to or deleted from the file.

Vector grids are two separate grids containing the u and v components. Special vector parameter names may be used to identify the following vectors:

WND	Total wind
GEO *	Geostrophic wind
AGE *	Ageostrophic wind
ISAL *	Isallobaric wind
THRM	Thermal wind

where * indicates names that also may be used as operators. Note that all of these wind vectors will have u and v components in meters per second. The total wind must be stored as UWND and VWND in the grid file if the components are north relative and as UREL and VREL if the components are grid relative.

Time, level, and vertical coordinate may be specified in GDATTIM, GLEVEL and GVCORD. However, any of these values may be overridden by in line parameters appended to an operand in the form of ^time@level\%ivcord. In-line parameters are only allowed for operands, since they modify parameters for individual grids. The in-

GEMPAK Grid Diagnostic Functions

line parameters may be entered individually or in combinations in any order.
If more than one file is opened, +n may also be used as an in-line parameter, where n is the number corresponding to the position of the file name entered in GDFILE. If +n is omitted, the first file is used.

Grid operators may be nested, allowing a complicated diagnostic function to be computed. One limitation is that layer and time range operators expect to work on operands read directly from the grid file or computed from special names.

In the following list of diagnostic operators, scalar operands are named Si and vector operands are Vi. Lower case u and v refer to the grid relative components of a vector. All meteorological output grids are in MKS units, except as noted. Operators using PR_functions are described in the GEMPAK PARAMETER APPENDIX. All scalar and vector differential operators are valid in any map projection for which the map scale factors can be computed. At present, this applies for the stereographic, cylindrical and conic projections available in GEMPAK. In the definitions below, only the cartesian form of the operators is shown. The general curvilinear coordinate forms involving the scale factors are not given.

The operators which are designated for use in polar coordinates are specific to that coordinate system.

SCALAR OUTPUT GRID

Algebraic and trignometric functions (angles are expressed in radians):

ABS	Absolute value ABS (S)
ACOS	Arc cosine function ACOS (S)
ASIN	Arc sine function ASIN (S)
ATAN	Arc tangent function ATAN (S)
ATN2	Arc tangent function ATN2 (S1, S2) = ATAN (S1 / S2)
COS	Cosine function COS (S)
EXP	Exponential to real EXP (S1, S2) = S1 ** S2
EXPI	Exponential to integer

	$\operatorname{EXP}(\mathrm{S} 1, \mathrm{~S} 2)=\mathrm{S} 1{ }^{* *}$ NINT (S2)
LN	Natural logarithm LN (S) = LOG (S)
LOG	Base 10 logarithm $\operatorname{LOG}(\mathrm{S})=\mathrm{LOG} 10(\mathrm{~S})$
SIN	Sine function SIN (S)
SQRT	Square root SQRT (S)
TAN	Tangent function TAN (S)
ADD	Addition $\operatorname{ADD}(\mathrm{S} 1, \mathrm{~S} 2)=\mathrm{S} 1+\mathrm{S} 2$
MUL	Multiplication MUL (S1, S2) = S1 *S2
QUO	Division $\text { QUO }(\mathrm{S} 1, \mathrm{~S} 2)=\mathrm{S} 1 / \mathrm{S} 2$
SUB	Subtraction $\text { SUB }(\mathrm{S} 1, \mathrm{~S} 2)=\mathrm{S} 1-\mathrm{S} 2$
SLT	Less than function SLT (S1, S2) = S1 < S2
SLE	Less than/equal to $\operatorname{SLE}(\mathrm{S} 1, \mathrm{~S} 2)=\mathrm{S} 1<=\mathrm{S} 2$
SGT	Greater than function SGT (S1, S2) = S1 > S2
SGE	Greater than/equal to SGE (S1, S2) = S1 >= S2
SBTW	Between function SBTW (S1, S2, S3) = S1 > S2 AND S1 < S3
B00L	Boolean function BOOL (S)
MASK	Masking function MASK (S1, S2) = RMISSD IF S2 = RMISSD, = S1 otherwise
MISS	Missing value replace $\operatorname{MISS}(S 1, S 2)=S 2$ if S1 = RMISSD, $=$ S1 otherwise
ADV	Advection $\operatorname{ADV}(S, V)=-\left(u^{*} \operatorname{DDX}(S)+v^{*} \operatorname{DDY}(S)\right)$
AVG	Average

GEMPAK Grid Diagnostic Functions

$\operatorname{AVG}(S 1, S 2)=(S 1+S 2) / 2$

AVOR	Absolute vorticity
	$\operatorname{AVOR}(\mathrm{V})=\operatorname{VOR}(\mathrm{V})+\mathrm{CORL}$

BVSQ Brunt-Vaisala frequency squared in a layer

= -(RDGAS / GRAVTY) * LAV (THTA) *(LAV (PRES) / 1000) ** KAPPA * LDF (PRES) / LAV (PRES) in THTA coordinates
$D Z=$ change in height across the layer
CROS Vector cross product magnitude
$\operatorname{CROS}(\mathrm{V} 1, \mathrm{~V} 2)=u 1$ * v2-u2 * v1
DDEN Density of dry air ($\mathbf{k g} / \mathbf{m}^{* *} \mathbf{3}$)
DDEN (PRES, TMPC) = PR_DDEN (PRES, TMPC)
DDR Partial derivative with respect to R
DDR (S) is computed using centered finite differences, with backward or forward differences at the boundary. Polar coordinates are assumed, and (R, THETA) maps into (X, Y).

DDT Time derivative
DDT $(S)=(S($ time1 $)-S($ time2 $)) /($ time1 - time2 $)$ where the time difference is in seconds.

DDX Partial derivative with respect to X
DDX (S) is computed using centered finite differences, with backward or forward differences at the boundary.

DDY Partial derivative with respect to Y
DDX (S) is computed using centered finite differences, with backward or forward differences at the boundary.

DEF Total deformation
$\operatorname{DEF}(\mathrm{V})=\left(\operatorname{STR}(\mathrm{V}){ }^{* *} 2+\operatorname{SHR}(\mathrm{V}) * * 2\right)^{* *} .5$
DIRN North relative direction of a vector
DIRN (V) = PR_DRCT (UN (V), VN (V))
DIRR Grid relative direction of a vector
DIRR (V) = PR_DRCT (u, v)
DIV Divergence
DIV (V) = DDX (u) + DDY (v)
DOT Vector dot product
DOT (V1, V2) = u1 * u2 + v1 * v2
DTH Partial derivative with respect to THETA
DTH (S) is computed using centered finite differences, with backward or forward differences at the boundary. Polar coordinates are assumed, and (R, THETA) maps into (X, Y).

FOSB Fosberg index, also called Fire Weather Index.
FOSB (TMPC, RELH, SPED) is computed with an empirical formula using surface temperature, relative humidity, and wind speed at the 2 meter or 10 meter level, or the mix of the two. High values in-

GEMPAK Grid Diagnostic Functions

dicate high flame lengths and rapid drying.
FCNT \quad Coriolis force at the center of a polar coordinate grid
FCNT (S) can be computed only for lat/lon grids which have been mapped to polar (R,THETA) coordinates and or which the center lat/lon have been stored with each grid.

FRNT Frontogenesis ($\mathrm{K} / \mathbf{1 0 0} \mathbf{~ k m} / \mathbf{3} \mathbf{h}$)
FRNT (THTA, V) = $1 / 2$ * CONV * MAG (GRAD (THTA)) * (DEF * COS (2 * BETA) - DIV)
$C O N V=$ unit conversion factor $=1.08 \mathrm{E} 4$ * $1 . \mathrm{E} 5$
BETA = ASIN ((- COS (DELTA) * DDX (THTA) -
SIN (DELTA) * DDY (THTA) /
MAG (GRAD (THTA)))
DELTA = 1/2 ATAN (SHR / STR)
GWFS Horizontal smoothing using normally distributed weights
GWFS (S,N) with theoretical response of $1 / e$ for N^{*} delta-x wave. Increasing N increases the smoothing.

HIGH \quad Relative maxima over a grid
HIGH (S, RADIUS) where RADIUS defines a square region of grid points. The region is a moving search area in which all points are compared to derive a relative maximum.

JCBN Jacobian determinant
JCBN (S1, S2) = DDX (S1) * DDY (S2) - DDY (S1) * DDX (S2)
KNTS Convert meters / second to knots
KNTS (S) = PR_MSKN (S) = S * 1.9438
LAP Laplacian operator
LAP (S) = DIV (GRAD (S))
LAV Layer average (2 levels)

$$
\text { LAV }(S)=(S(\text { level1 })+S(\text { level2) }) / 2 .
$$

LDF Layer difference (2 levels)
LDF (S) = S (level1) - S (level2)
LOWS Relative minima over a grid
LOWS (S, RADIUS) where RADIUS defines a square region of grid points. The region is a moving search area in which all points are compared to derive a relative minimum.

MAG Magnitude of a vector
$\operatorname{MAG}(\mathrm{V})=$ PR_SPED (u, v)
MASS Mass per unit volume in a layer
MASS = 100 * LDF (PRES) / (GRAVTY * (level1 - level2))
The 100 converts mb to Pascals. Level1 and level2 are also converted to Pascals when VCOORD = PRES. The volume is expressed in units of m * m * (units of the vertical coordinate). This is an operand.

MDIV Layer-average mass divergence
MDIV (V) = DIV ([MASS * LAV (u), MASS * LAV (v)])
MIXR Mixing ratio

GEMPAK Grid Diagnostic Functions

MIXR (DWPC, PRES) = PR_MIXR (DWPC, PRES)
The units are kg/kg internally, but g/kg on output.
MRAD Magnitude of storm relative radial wind MRAD (V, LAT, LON, DIR, SPD) = DOT (Vrel, R)

> where Vrel is the velocity minus the storm motion vector specified by DIR and SPD, and R is a unit vector tangent to a great circle arc from the storm center specified by LAT, LON to a grid point.

MSDV Layer-average mass-scalar flux divergence
$\operatorname{MSDV}(\mathrm{S}, \mathrm{V})=\operatorname{DIV}([\operatorname{MASS}$ * LAV (S) * LAV (u), MASS * LAV (S) * LAV (v)])
Note: MASS is computed using the in-line parameter values for V rather than those for S.

MSFC \quad Psuedo angular momentum (for cross sections)
MSFC (V) = NORMV (V) + CORL * DIST
DIST is the distance along the cross section in meters. The units for the M-surface are expressed in m / s.

MTNG Magnitude of storm relative tangential wind
MTNG (V, LAT, LON, DIR, SPD) = DOT (Vrel, k X R)
where Vrel is the velocity minus the storm motion vector specified by DIR and SPD, and R is a unit vector tangent to a great circle arc from the storm center specified by LAT, LON to a grid point. k denotes the local vertical unit vector.

NORM Scalar vector component normal to a cross section
NORM (V) = DOT (V, unit normal vector)
If the starting point for the cross section is on the left, the unit normal vector points into the cross section plane.

PLAT Latitude at each point in polar coordinates
PLAT (S)
Note: only the header, which contains the center latitude and longitude, is used.
PLON Longitude at each point in polar coordinates
PLON (S)
Note: only the header, which contains the center latitude and longitude, is used.
POIS Solve Poisson eqn. of a forcing function with the given boundary values POIS ($\mathrm{S} 1, \mathrm{~S} 2$) where S 1 is the forcing function grid and S 2 is the boundary value.

The equation LAP $($ POIS $)=\mathrm{S} 1$ is solved for POIS.
POLF \quad Coriolis force at each point in polar coordinates POLF (S)

Note: only the header, which contains the center latitude and longitude, is used.
PVOR Potential vorticity in a layer
$\operatorname{PVOR}(\mathrm{S}, \mathrm{V})=-\operatorname{GRAVTY}$ * AVOR (VLAV (V)) * LDF (THTA) / (100 * LDF (PRES))

The 100 converts millibars to Pascals.
Units are Kelvins / meters / Pascals / seconds**3 (note that GRAVTY is included).

GEMPAK Grid Diagnostic Functions

PVOR works on a layer
in PRES or THTA coordinates. In isobaric coordinates, the scalar operand, S, is THTA, THTE, or THES. In isentropic coordinates, the scalar operand, S, is PRES. Multiplying by $10^{* *} 6$ gives standard PV units.

RELH Relative humidity
RELH (TEMP, DWPT) = PR_RELH (TEMP, DWPT)
RICH Richardson stability number in a layer
$\operatorname{RICH}(\mathrm{V})=$ GRAVTY * DZ * LDF (THTA) / (LAV (THTA) * MAG (VLDF (V)) ** 2)
Note: $\mathrm{DZ}=$ change in height across the layer.
RICH can be evaluated in PRES, THTA or HGHT vertical coordinate.
ROSS Rossby number
ROSS (V1, V2) = MAG (INAD (V1, V2)) / (CORL * MAG (V1))
SAVG Average over whole grid
SAVG (S) = average of all non-missing grid point values
SAVS Average over subset grid
SAVS (S) = average of all non-missing grid point values in the subset area
SDIV Flux divergence of a scalar
SDIV (S, V) = S * DIV (V) + DOT (V, GRAD (S))
SHR Shear deformation
SHR (V) = DDX (v) + DDY (u)
SM5S Smooth scalar grid using a 5-point smoother
SM5S (S) = . 5 * $(\mathrm{i}, \mathrm{j})+.125$ * ($\mathrm{S}(\mathrm{i}+1, \mathrm{j})+\mathrm{S}(\mathrm{i}, \mathrm{j}+1)+\mathrm{S}(\mathrm{i}-1, \mathrm{j})+\mathrm{S}(\mathrm{i}, \mathrm{j}-1))$
SM9S Smooth scalar grid using a 9-point smoother
SM5S (S) = . $25^{*} \mathrm{~S}(\mathrm{i}, \mathrm{j})+.125^{*}(\mathrm{~S}(\mathrm{i}+1, \mathrm{j})+\mathrm{S}(\mathrm{i}, \mathrm{j}+1)+\mathrm{S}(\mathrm{i}-1, \mathrm{j})+\mathrm{S}(\mathrm{i}, \mathrm{j}-1))+.0625$

* $(\mathrm{S}(\mathrm{i}+1, \mathrm{j}+1)+\mathrm{S}(\mathrm{i}+1, \mathrm{j}-1)+\mathrm{S}(\mathrm{i}-1, \mathrm{j}+1)+\mathrm{S}(\mathrm{i}-1, \mathrm{j}-1))$

STAB Thermodynamic stability within a layer (lapse rate)
STAB (TMPC) = LDF (TMPC) / DZ in PRES coordinates.
$=-($ RDGAS / GRAVTY) * LAV (THTA) * (LAV (PRES) / 1000) ** KAPPA *
LDF (PRES) / LAV (PRES) in THTA coordinates
$D Z=$ change in height across the layer.
Units are degrees / kilometer.
STR Stretching deformation
STR (V) = DDX (u) - DDY (v)
TANG Scalar vector component tangential to a cross section
TANG (V) = DOT (V, unit tangent vector)
If the starting point for the cross section is on the left, the unit tangent vector points to the right.
TAV Time average (2 times)
TAV (S) = (S (time1) + S (time2)) / 2.
TDF Time difference (2 times)

GEMPAK Grid Diagnostic Functions

	TDF (S) = S (time1) - S (time2)
THES	Saturated equivalent potential temperature in Kelvin THES (PRES, TMPC) = PR_THTE (PRES, TMPC, TMPC)
THTA	Potential temperature in Kelvin THTA (TMPC, PRES) = PR_THTA (TMPC, PRES)
THTE	Equivalent potential temperature in Kelvin THTE (PRES, TMPC, DWPC) = PR_THTE (PRES, TMPC, DWPC)
THWC	Wet bulb potential temperature in Celsius THWC (PRES, TMPC, DWPC) = PR_THWC (PRES, TMPC, DWPC)
TMST	Parcel temperature in Kelvin along a moist adiabat TMST (THTE, PRES) = PR_TMST (THTE, PRES, GUESS) where THTE is the equivalent potential temperature at the input GLEVEL, PRES is the pressure level at which the parcel temperature is valid, and GUESS is a guess-field calculated automatically.
TMWK	Wet bulb temperature in Kelvin TMWK (PRES, TMPK, RMIX) = PR_TMWK (PRES, TMPK, RMIX)
UN	North relative u component $\mathrm{UN}(\mathrm{V})=$ zonal wind component
UR	Grid relative u component UR (V) $=u$
VN	North relative \mathbf{v} component $\mathrm{VN}(\mathrm{V})=$ meridional wind component
VOR	Vorticity $\operatorname{VOR}(\mathrm{V})=\operatorname{DDX}(\mathrm{v})-\operatorname{DDY}(\mathrm{u})$
VR	Grid relative v component VR (V) $=\mathrm{V}$
WNDX	WINDEX (index for microburst potential) WNDX (S1, S2, S3, S4) $=2.5$ * SQRT (HGHTF * RATIO * (GAMMA**2-30 + MIXRS - 2 * MIXRF))
	TMPCS = surface temperature = S1
	HGHTF = AGL Height of Freezing level = S2
	MIXRS = surface mixing ratio $=$ S3
	MIXRF $=$ freezing level mixing ratio $=$ S4
	RATIO $=$ MIXRS / 12 if MIXRS < 12, = 1 otherwise
	GAMMA = TMPCS / HGHTF
WSHR	Magnitude of the vertical wind shear in a layer

GEMPAK Grid Diagnostic Functions

WSHR (V) = MAG [VLDF (V)] / DZ in PRES coordinates.
= - (RDGAS / GRAVTY) * LAV (THTA) * (LAV (PRES) / 1000) ** KAPPA *
LDF (PRES) / LAV (PRES) in THTA coordinates.
$D Z=$ change in height across the layer
WSHR can be evaluated in PRES, THTA, or HGHT coordinate.
XAV Average along a grid row
XAV (S) = (S (X1) + S (X2) + ... $+\mathrm{S}(\mathrm{KXD})$) / KNT
$K X D=$ number of points in row
KNT = number of non-missing points in row
XAV for a row is stored at every point in that row.
In polar coord., XAV is the average along a radial.
XSUM Sum along a grid row
XSUM (S) = (S (X1) + S (X2) + ... + S (KXD))
$K X D=$ number of points in row
XSUM for a row is stored at every point in that row. In polar coord., XSUM is the sum along a radial.
YAV Average value along a grid column
YAV $(\mathrm{S})=(\mathrm{S}(\mathrm{Y} 1)+\mathrm{S}(\mathrm{Y} 2)+\ldots+\mathrm{S}(\mathrm{KYD})) / \mathrm{KNT}$
KYD = number of points in column
KNT = number of non-missing points in column
YAV for a column is stored at every point in that column. For polar coordinates, YAV is the average around a circle. If the theta coordinate starts at 0 degrees and ends at 360 degrees, the first radial is not used in computing the average.
YSUM Sum along a grid column
SUM (S) $=(\mathrm{S}(\mathrm{Y} 1)+\mathrm{S}(\mathrm{Y} 2)+\ldots+\mathrm{S}(\mathrm{KYD}))$
$K Y D=$ number of points in column
YSUM for a column is stored at every point in that column. For polar coordinates, YSUM is the sum around a circle. If the theta coordinate starts at 0 degrees and ends at 360 degrees, the first radial is not used in computing the sum.

VECTOR OUTPUT GRID

AGE Ageostrophic wind

AGE (S) $=[\mathrm{u}(\mathrm{OBS})-\mathrm{u}(\mathrm{GEO}(\mathrm{S})), \mathrm{v}(\mathrm{OBS})-\mathrm{v}(\mathrm{GEO}(\mathrm{S}))]$

CIRC Circulation (for cross sections)

$\operatorname{CIRC}(\mathrm{V}, \mathrm{S})=[\operatorname{TANG}(\mathrm{V}), \mathrm{S}$]
DVDX Partial x derivative of a vector
$\operatorname{DVDX}(\mathrm{V})=[\operatorname{DDX}(\mathrm{u}), \operatorname{DDX}(\mathrm{v})]$

GEMPAK Grid Diagnostic Functions

DVDY Partial y derivative of a vector
DVDY (V) = [DDY (u), DDY (v)]
GEO Geostrophic wind
GEO (S) = [- DDY (S) * const / CORL, DDX (S) * const / CORL]

const	s	vert coord
GRAVTY ZMSL	none	
GRAVTY HGHT	PRES	
1	PSYM	THTA
100/RO PRES	HGHT	

RO = PR_DDEN (PRES, TMPC)

GRAD Gradient of a scalar

GRAD (S) = [DDX (S), DDY (S)]
GWFV Horizontal smoothing using normally distributed weights
GWFV (V,N) with theoretical response of $1 / \mathrm{e}$ for N^{*} delta-x wave. Increasing N increases the smoothing.

INAD Inertial advective wind
INAD (V1, V2) = [DOT (V1, GRAD (u2)),
DOT (V1, GRAD (v2))]
ISAL Isallobaric wind
ISAL (S) = [- DDT (v (GEO(S))) / CORL, DDT (u (GEO(S))) / CORL]

KCRS Unit vector \mathbf{k} cross a vector
KCRS (V) $=[-v, u]$
KNTV Convert meters / second to knots
KNTV (V) = [PR_MSKN (u), PR_MSKN (v)]
LTRN Layer-averaged transport of a scalar
LTRN (S, V) = [MASS * LAV (S) * LAV (u), MASS * LAV (S) * LAV (v)]
Note: MASS is computed using the in-line parameter values for V rather than those for S.

NORMV Vector component normal to a cross section.
NORMV (V) = NORM (V) * unit normal vector

GEMPAK Grid Diagnostic Functions

QVEC \quad Q-vector at a level ($\mathrm{K} / \mathrm{m} / \mathrm{s}$)
$\operatorname{QVEC}(\mathrm{S}, \mathrm{V})=[-(\operatorname{DOT}(\operatorname{DVDX}(\mathrm{V}), \operatorname{GRAD}(\mathrm{S}))$),

- (DOT (DVDY (V), GRAD (S)))] where S can be any thermal paramenter, usually THTA.

QVCL \quad Q-vector of a layer ($\mathbf{m b} / \mathbf{m} / \mathbf{s}$)
QVCL (THTA, V) = (1/(D (THTA) / DP)) *
[(DOT (DVDX (V), GRAD (THTA))),
(DOT (DVDY (V), GRAD (THTA)))]

RAD Storm relative radial wind

RAD (V, LAT, LON, DIR, SPD) = SMUL (DOT (Vrel, R), R)
where Vrel is the velocity minus the storm motion
specified by DIR and SPD, and R is a unit vector
tangent to a great circle arc from the storm center specified by LAT, LON to a grid point.

ROT Coordinate rotation
ROT (angle, V) = [u * COS (angle) + v * SIN (angle),
-u * SIN (angle) + v * COS (angle)]

SMUL Multiply a scalar with each component of a vector SMUL (S, V) = [S * u, S * v]

SM5V Smooth vector grid using a 5-point smoother
SM5V (V$)=.5$ * $\mathrm{V}(\mathrm{i}, \mathrm{j})+.125$ * $\mathrm{V}(\mathrm{i}+1, \mathrm{j})+\mathrm{V}(\mathrm{i}, \mathrm{j}+1)+$ $V(i-1, j)+V(i, j-1))$

SQUO Vector division by a scalar.
SQUO (S, V) = [u/s, v/s]
TANGV Vector component tangential to a cross section.
TANGV (V) = TANG (V) * unit tangent vector
THRM Thermal wind
THRM (S) = [u (GEO(S)) (level1) - u (GEO(S)) (level2),
v (GEO(S)) (level1) - v (GEO(S)) (level2)]
TNG Storm relative tangential wind
TNG (V, LAT, LON, DIR, SPD) = SMUL (DOT (Vrel, k X R), k X R)
where Vrel is the velocity minus the storm motion vector specified by DIR and SPD, and R is a unit vector tangent to a great circle arc from the storm center specified by LAT, LON to a grid point. k denotes the local vertical unit vector.

VADD Add the components of two vectors
VADD (V1, V2) = [u1+u2, v1+v2]
VASV Vector component of V1 along V2
$\operatorname{VASV}(\mathrm{V} 1, \mathrm{~V} 2)=[\mathrm{DOT}(\mathrm{V} 1, \mathrm{~V} 2) / \mathrm{MAG}(\mathrm{V} 2)$ ** 2] $\operatorname{V2}$
VAVG Average over whole grid

VAVG (V) = average of all non-missing grid point values
VAVS Average over subset grid
VAVS (V) = average of all non-missing grid point values in the subset area

VECN Create a vector grid from two north relative scalar components $\operatorname{VECN}(\mathrm{S} 1, \mathrm{~S} 2)=[\mathrm{S} 1, \mathrm{~S} 2$]

VECR Create a vector grid from two grid relative scalar components $\operatorname{VECR}(\mathrm{S} 1, \mathrm{~S} 2)=[\mathrm{S} 1, \mathrm{~S} 2$]

VLAV Layer average for a vector
$\operatorname{VLAV}(\mathrm{V})=[(\mathrm{u}$ (level1) +u (level2)) / 2.,

$$
(v(\text { level1 })+v(\text { level2 }) ~) / 2 .]
$$

VLDF Layer difference for a vector
VLDF (V) = [u (level1) - u (level1),

$$
v \text { (level1) -v (level2)] }
$$

VMUL Multiply the components of two vectors
VMUL (V1, V2) $=[$ u1*u2, v1*v2]
VQUO Divide the components of two vectors
VQUO (V1, V2) = [u1/u2, v1/v2]
VSUB Subtract the components of two vectors
$\operatorname{VSUB}(\mathrm{V} 1, \mathrm{~V} 2)=[\mathrm{u} 1-\mathrm{u} 2, \mathrm{v} 1-\mathrm{v} 2$]
VLT Less than function
$\mathrm{VLT}(\mathrm{V}, \mathrm{S})=\mathrm{V} \operatorname{IF}|\mathrm{V}|<\mathrm{S}$
VLE Less than or equal to function
VLE (V, S) = V IF \mid V $\mid<=\mathrm{S}$
VGT Greater than function
VGT (V, S) = V IF \mid V $\mid>S$
VGE Greater than or equal to function
VGE (V, S) = V IF \mid V| >= S
VBTW Between function
VBTW (V, S1, S2) = V IF S1 < |V| < S2
VMSK Masking function
VMSK (V, S) = RMISSD IF S = RMISSD
$=\mathrm{V}$ otherwise

